首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic syndrome is more prevalent in men than in women. In an experimental dietary model of metabolic syndrome, the high-fructose-fed rat, oxidative stress has been observed in males. Given that estradiol has been documented to exert an antioxidant effect, we investigated whether female rats were better protected than males against the adverse effects of a high-sucrose diet, and we studied the influence of hormonal status in female rats. Males and females were first fed a sucrose-based or starch-based diet for 2 weeks. In the males, the plasma triglyceride (TG)-raising effect of sucrose was accompanied by significantly lowered plasma alpha-tocopherol and a significantly lowered alpha-tocopherol/TG ratio (30%), suggesting that vitamin E depletion may predispose lipoproteins to subsequent oxidative stress. In males, after exposure of heart tissue homogenate to iron-induced lipid peroxidation, thiobarbituric reactive substances were significantly higher in the sucrose-fed than in the starch-fed rats. In contrast, in sucrose-fed females, neither a decrease in vitamin E/TG ratio nor an increased susceptibility of heart tissue to peroxidation was observed, despite both a significantly decreased heart superoxide dismutase activity (14%) and a significant 3-fold increase in plasma nitric oxide concentration compared with starch-fed females. The influence of hormonal status in female rats was then assessed using intact, ovariectomized, or estradiol-supplemented ovariectomized female rats fed the sucrose or starch diet for 2 weeks. After exposure of heart tissue to iron-induced lipid peroxidation, higher susceptibility to peroxidation was found only in ovariectomized females fed the sucrose diet compared with the starch group and not in intact females or ovariectomized females supplemented with estradiol. Thus, estrogens, by their effects on antioxidant capacity, might explain the sexual difference in the pro-oxidant effect of sucrose diet resulting in metabolic syndrome in rats.  相似文献   

2.
It has been suggested that oxidative stress plays an important role in the chronic complications of diabetes. The experimental findings regarding the changes in tissue antioxidant enzymes and lipid peroxidation of diabetic tissues have been inconsistent. Previous studies in our laboratory demonstrated that the reducing power of a specific tissue correlates with its low molecular weight antioxidant (LMWA) capacity. In the present study, the overall LMWA capacity (reducing equivalents) of plasma and tissues of streptozotocin (STZ)-induced diabetic rats (1-4 weeks) and insulin treated diabetic rats were measured by cyclic voltammetry. Levels of water and lipid soluble LMWA capacity progressively decreased in the diabetic plasma, kidney, heart and brain, while the diabetic liver, at 2, 3 and 4 weeks after STZ injection, showed a significant increase in the overall lipid soluble LMWA capacity (p < 0.001). Subsequently, analysis of specific components by high pressure liquid chromatography (electrochemical detection) showed decreased levels of ascorbic acid in plasma, kidney, heart and brain of diabetic animals. The alpha-tocopherol level dropped in all tissues, except for the liver in which there was a significant increase (p < 0.01 and p < 0.001 at 2-4 weeks). Lipid peroxidation was assessed by conjugated diene levels, which increased significantly in all diabetic tissues except the liver. Insulin treatment that was started after 3 weeks of diabetes and continued for 3 weeks showed no change in the conjugated dienes and in the overall LMWA capacity in all organs. Our results suggest a unique behavior of the liver in the STZ-induced diabetic rats to the stress and indicate its higher capacity to cope with oxidative stress as compared to other organs.  相似文献   

3.
It has been suggested that oxidative stress plays an important role in the chronic complications of diabetes. The experimental findings regarding the changes in tissue antioxidant enzymes and lipid peroxidation of diabetic tissues have been inconsistent. Previous studies in our laboratory demonstrated that the reducing power of a specific tissue correlates with its low molecular weight antioxidant (LMWA) capacity. In the present study, the overall LMWA capacity (reducing equivalents) of plasma and tissues of streptozotocin (STZ)-induced diabetic rats (1–4 weeks) and insulin treated diabetic rats were measured by cyclic voltammetry. Levels of water and lipid soluble LMWA capacity progressively decreased in the diabetic plasma, kidney, heart and brain, while the diabetic liver, at 2, 3 and 4 weeks after STZ injection, showed a significant increase in the overall lipid soluble LMWA capacity (p < 0.001). Subsequently, analysis of specific components by high pressure liquid chromatography (electrochemical detection) showed decreased levels of ascorbic acid in plasma, kidney, heart and brain of diabetic animals. The α-tocopherol level dropped in all tissues, except for the liver in which there was a significant increase (p < 0.01 and p < 0.001 at 2–4 weeks). Lipid peroxidation was assessed by conjugated diene levels, which increased significantly in all diabetic tissues except the liver. Insulin treatment that was started after 3 weeks of diabetes and continued for 3 weeks showed no change in the conjugated dienes and in the overall LMWA capacity in all organs. Our results suggest a unique behavior of the liver in the STZ-induced diabetic rats to the stress and indicate its higher capacity to cope with oxidative stress as compared to other organs.  相似文献   

4.
We have investigated the protective effect of vitamin C and E together supplementation on oxidative stress and antioxidant enzyme activities in the liver of streptozotocin-induced diabetic rats, unsupplemented diabetic and control rats. We also determined the levels of both the vitamins and oxidative stress in plasma. Vitamin supplementation in diabetic rats lowered plasma and liver lipid peroxidation, normalised plasma vitamin C levels and raised vitamin E above normal levels. In liver, the activity of glutathione peroxidase was raised significantly and that of glutathione-S-transferase was normalised by vitamin supplementation in diabetic rats. The levels of lipid peroxidation products in plasma and liver of vitamin-supplemented diabetic rats and activities of antioxidant enzymes in liver suggest that these vitamins reduce lipid peroxidation by quenching free radicals.  相似文献   

5.
Supplementation of thiol compounds has been suggested to protect against the toxic effects of reduced oxygen species by contributing to the thiol pool of the cell. The present study was designed to determine whether supplementation of methionine in the diet of diabetic animals protected against the oxidative stress in diabetic pathology. Oral methionine was administered at a dosage of 330 mg/100 g feed to diabetic rats. The effect was compared with the effect of insulin administration. Levels of lipid peroxides were measured in plasma, erythrocytes, and erythrocyte membrane. Anti-oxidants were measured in plasma. Diabetic condition was associated with increased lipid peroxidation and depletion in antioxidant levels. Although methionine did not affect the level of blood glucose and some of the antioxidants, it lowered the lipid peroxide content in blood. Erythrocyte lipid peroxidation activity was unaffected by methionine treatment. Administration of insulin lowered both plasma and erythrocyte lipid peroxide levels.  相似文献   

6.
We recently reported that feeding cyanidin 3-O-beta-d-glucoside (C3G), a typical anthocyanin pigment, lowered the serum thiobarbituric acid-reactive substance (TBARS) concentration and increased the oxidation resistance of the serum to lipid peroxidation in rats. These results suggest that C3G acts as a potent antioxidant in vivo when acute oxidative stress is encountered. In the present study, we evaluated whether feeding C3G suppresses oxidative injury to the liver caused by hepatic ischemia-reperfusion (I/R), which was used as a model for oxidative stress. Rats were fed a diet containing C3G (2 g/kg diet) for 14 days and then subjected to hepatic I/R. I/R treatment elevated the liver TBARS concentration and the serum activities of marker enzymes (glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase) for liver injury and lowered the liver reduced glutathione concentration. Feeding C3G significantly suppressed these changes caused by hepatic I/R. Although the liver ascorbic acid concentration was also lowered by hepatic I/R, feeding C3G restored this concentration more quickly compared to the control rats. These results indicate that orally administered C3G suppresses I/R-induced oxidative damage and suggest that C3G functions as a potent antioxidant in vivo under oxidative stress.  相似文献   

7.
The aim of the present study was to evaluate the protective effect of Gymnema montanum on red blood cell (RBC) membrane in diabetic rats during lipid peroxidation. Ethanol extract of G. montanum leaves (GLEt) was administered orally to alloxan-induced diabetic rats for 3 weeks, and the effects on blood glucose, insulin, lipid peroxidation markers, thiobarbituric acid reactive substances, hydroperoxides in plasma and antioxidant enzymes including superoxide dismutase, catalase and glutathione peroxidase activities in erythrocytes were studied. Administration of GLEt to diabetic animals at doses of 50, 100, and 200 mg/kg body weight lowered elevated blood glucose levels by 24, 35, and 66%, respectively, relative to untreated diabetic rats. In comparison, treatment with the known antidiabetic drug, glibenclamide (600 μg/kg body weight) decreased blood glucose concentrations by 51%. Plasma insulin concentrations were increased in the diabetic rat by 73% with GLEt (200 mg/kg body weight) and 45% with glibenclamide (600 μg/kg body weight). Although a significant decrease in the lipid peroxidation markers was observed in plasma on treatment with GLEt and glibenclamide, the RBC antioxidant levels were increased significantly in diabetic rats. Furthermore, erythrocytes from the GLEt-treated animals were found to be more resistant to H2O2-induced peroxidation than that of untreated diabetic animals. The chemical characterization of the polyphenolics of the extract showed the presence of gallic acid (5.29% w/w), resveratrol (2.2% w/w), and quercetin (16.6% w/w). The results of this study suggest that G. montanum may be useful for the control, management, and prevention of oxidative stress associated with diabetes.  相似文献   

8.
Effect of feeding 0.5% curcumin diet or 1% cholesterol diet was examined in albino rats rendered diabetic with streptozotocin injection. Diabetic rats maintained on curcumin diet for 8 weeks excreted comparatively less amounts of albumin, urea, creatinine and inorganic phosphorus. Urinary excretion of the electrolytes sodium and potassium were also significantly lowored under curcumin treatment. Dietary curcumin also partially reversed the abnormalities in plasma albumin, urea, creatinine and inorganic phosphorus in diabetic animals. On the other hand, glucose excretion or the fasting sugar level was unaffected by dietary curcumin and so also the body weights were not improved to any significant extent. Diabetic rats fed curcumin diet had a lowered relative liver weight at the end of the study compared to other diabetic rat groups. Diabetic rats fed a curcumin diet also showed lowered lipid peroxidation in plasma and urine when compared to other diabetic groups. The extent of lipid peroxidation on the other hand, was still higher in cholesterol fed diabetic groups compared to diabetic rats fed with control diet.Thus, the study reveals that curcumin feeding improves the metabolic status in diabetic condition, despite no effect on hyperglycemic status or the body weights. The mechanism by which curcumin improves this situation is probably by virtue of its hypocholesterolemic influence, antioxidant nature and free radical scavenging property.  相似文献   

9.
Wang  Jingwen  Zhang  Yuanyuan  Fang  Zhijia  Sun  Lijun  Wang  Yaling  Liu  Ying  Xu  Defeng  Nie  Fanghong  Gooneratne  Ravi 《Biological trace element research》2019,190(1):95-100

Toxic heavy metal cadmium wildly pollutes the environment and threats the human health. Effective treatment of cadmium-induced toxicity and organ damage is an important issue. Cadmium causes organ damage through inducing oxidative stress. Our previous study also found oleic acid (OA) synthesis-related gene can confer resistance to cadmium and alleviate cadmium-induced stress in yeast. However, its alleviation mechanism on cadmium stress especially in animals is still unclear. In this study, the alleviative effects of OA on cadmium and cadmium-induced oxidative stress in rats were investigated. Oral administration of 10, 20, and 30 mg/kg/day OA can significantly increase the survival rate of rats intraperitoneally injected with 30 mg/kg/day cadmium continuously for 7 days. Similar to ascorbic acid (AA), OA can significantly reduce the cadmium-induced lipid peroxidation in multiple organs of rats. The investigation of OA on superoxide dismutase (SOD) activity showed that OA increased the SOD activity of cadmium-treated rat organs. More important, OA reduced the level of superoxide radical O2− of cadmium-treated rat organs. And OA exhibited a strong DPPH radicals scavenging activity at dose of 10, 20 and 30 mg/mL, which may contributed to alleviating cadmium-induced oxidative stress. This study revealed that OA could significantly alleviate cadmium stress via reducing cadmium-induced lipid peroxidation and SOD activity inhibition through its radicals scavenging activity.

  相似文献   

10.
The present study was aimed to evaluate the protective effects of N-acetyl cysteine (NAC) on changes in the activities/levels of adenosine triphosphatases and minerals in isoproterenol-induced myocardial-infarcted rats. Male albino Wistar rats were pretreated with NAC (10 mg/kg body weight) daily for a period of 14 days. After pretreatment period, rats were induced myocardial infarction (MI) by isoproterenol (100 mg/kg body weight). The activity of sodium/potassium-dependent adenosine triphosphatase was decreased, and the activities of calcium- and magnesium-dependent adenosine triphosphatases were increased in the heart of isoproterenol-induced myocardial-infarcted rats. Furthermore, the levels of potassium were lowered and the levels of sodium and calcium were increased in the heart of isoproterenol-induced rats. Increased plasma lipid peroxidation was observed in isoproterenol-induced rats. Pretreatment with NAC showed protective effects on adenosine triphosphatases, minerals, and lipid peroxidation. The in vitro study confirmed the reducing property of NAC. The observed effects are due to the membrane-stabilizing and antioxidant effects of NAC. The results of this study will be useful for the prevention of MI.  相似文献   

11.
The anti-inflammatory properties of n-3 polyunsaturated fatty acids (n-3 PUFA) have suggested a potential role of these nutrients in dietary modification for prevention of allergic disease in early life. As oxidative stress is known to modify antigen presenting cell (APC) signalling and resulting immune responses, we examined the effects of maternal n-3 PUFA supplementation in pregnancy on markers of oxidative stress and APC function in neonates at high risk of allergy. Eighty-three pregnant atopic women were randomised to receive 4 g daily of either fish oil (n = 40) or olive oil (n = 43) capsules in a controlled trial from 20 weeks gestation until delivery. Plasma (cord blood) and urinary F2-isoprostanes were measured as markers of lipid peroxidation. Cord erythrocyte fatty acids and markers of APC function (HLA-DR expression and cytokine responses) were measured and related to levels of plasma F2-isoprostanes. Maternal fish oil supplementation lowered plasma (p < 0.0001) and urinary (p = 0.06) F2-isoprostanes. HLA-DR expression on APC was not different between the groups. In multiple regression analysis, 28.8% of the variance in plasma F2-isoprostanes was explained by positive relationships with erythrocyte arachidonic acid (AA) and monocyte HLA-DR expression and a negative relationship with erythrocyte eicosapentaenoic acid (EPA). This study shows that maternal supplementation with fish oil can attenuate neonatal lipid peroxidation. Clinical follow-up of these infants will help to determine if there are sustained effects on postnatal oxidative stress and expression of allergic disease.  相似文献   

12.
alpha-Lipoic acid treatment (100 mg/kg/day for 2 weeks after 6 weeks of untreated diabetes) of streptozotocin diabetic rats partially but significantly reversed both reduced contractile response of distal colon to acetylcholine and delayed transit of charcoal meal in small intestine compared to diabetic control. These effects of alpha-Lipoic acid were associated with complete reversal of diabetes induced increased plasma lipid peroxidation level. alpha-Lipoic acid had no effect on any of the parameters measured in non-diabetic rats. These findings demonstrate contribution of oxidative stress in the development of physiological changes of gut in diabetes.  相似文献   

13.
In this study, we investigated the efficiency of short-term treatment with gemfibrozil in the reversal of diabetes-induced changes on carbohydrate and lipid metabolism, and antioxidant status of aorta. Diabetes was induced by a single injection of streptozotocin (45 mg/kg, i.p.). After 12 weeks of induction of diabetes, the control and diabetic rats were orally gavaged daily with a dosing vehicle alone or with 100 mg/kg of gemfibrozil for 2 weeks. At 14 weeks, there was a significant increase in blood glucose, plasma cholesterol and triglyceride levels of untreated-diabetic animals. Diabetes was associated with a significant increase in thiobarbituric acid reactive substances (TBARS) in both plasma and aortic homogenates, indicating increased lipid peroxidation. Diabetes caused an increase in vascular antioxidant enzyme activity, catalase, indicating existence of excess hydrogen peroxide (H2O2). However, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities in aortas did not significantly change in untreated-diabetic rats. In diabetic plus gemfibrozil group both plasma lipids and lipid peroxides showed a significant recovery. Gemfibrozil treatment had no effect on blood glucose, plasma insulin and vessel antioxidant enzyme activity of diabetic animals. Our findings suggest that the beneficial effect of short-term gemfibrozil treatment in reducing lipid peroxidation in diabetic animals does not depend on a change of glucose metabolism and antioxidant status of aorta, but this may be attributed to its decreasing effect on circulating lipids. The ability of short-term gemfibrozil treatment to recovery of metabolism and peroxidation of lipids may be an effective strategy to minimize increased oxidative stress in diabetic plasma and vasculature.  相似文献   

14.
Nicotine, a major toxic component of cigarette smoke has been identified as a major risk factor for lung related diseases. In the present study, we evaluated the protective effects of curcumin on lipid peroxidation and antioxidants status in bronchoalveolar lavage fluid (BALF) and bronchoalveolar lavage (BAL) of nicotine treated Wistar rats. Lung toxicity was induced by subcutaneous injection of nicotine at a dose of 2.5 mg/kg body weight (5 days a week, for 22 weeks) and curcumin (80 mg/kg body weight) was given simultaneously by intragastric intubation for 22 weeks. Measurement of biochemical marker enzymes: alkaline phosphatase, lactate dehydrogenase, lipid peroxidation and antioxidants were used to monitor the antiperoxidative effects of curcumin. The increased biochemical marker enzymes as well as lipid peroxides in BALF and BAL of nicotine treated rats was accompanied by a significant decrease in the levels of glutathione, glutathione peroxidase, superoxide dismutase and catalase. Administration of curcumin significantly lowered the biochemical marker enzymes, lipid peroxidation and enhanced the antioxidant status. The results of the present study suggest that curcumin exert its protective effect against nicotine-induced lung toxicity by modulating the biochemical marker enzymes, lipid peroxidation and augmenting antioxidant defense system.  相似文献   

15.
In this study we investigated the hypothesis that a high-salt diet to hyperinsulinemic rats might impair antioxidant defense owing to its involvement in the activation of sodium reabsorption to lead to higher oxidative stress. Rats were fed a standard (CON), a high-salt (HS), or a high-fructose (HF) diet for 10 weeks after which, 50% of the animals belonging to the HF group were switched to a regimen of high-fructose and high-salt diet (HFS) for 10 more weeks, while the other groups were fed with their respective diets. Animals were then euthanized and their blood and liver were examined. Fasting plasma glucose was found to be significantly higher (approximately 50%) in fructose-fed rats than in the control and HS rats, whereas fat liver also differed in these animals, producing steatosis. Feeding fructose-fed rats with the high-salt diet triggered hyperinsulinemia and lowered insulin sensitivity, which led to increased levels of serum sodium compared to the HS group. This resulted in membrane perturbation, which in the presence of steatosis potentially enhanced hepatic lipid peroxidation, thereby decreasing the level of antioxidant defenses, as shown by GSH/GSSG ratio (HFS rats, 7.098±2.1 versus CON rats, 13.2±6.1) and superoxide dismutase (HFS rats, 2.1±0.05 versus CON rats, 2.3±0.1%), and catalase (HFS rats, 526.6±88.6 versus CON rats, 745.8±228.7 U/mg ptn) activities. Our results indicate that consumption of a salt-rich diet by insulin-resistant rats may lead to regulation of sodium reabsorption, worsening hepatic lipid peroxidation associated with impaired antioxidant defenses.  相似文献   

16.
Magnesium deficiency increases oxidative stress in rats   总被引:4,自引:0,他引:4  
Magnesium deficiency has been implicated in the development of atherosclerosis and late diabetic complications, diseases often associated with increased oxidative stress. Present study was carried out to examine the effect of magnesium deficiency on oxidative stress and total radical trapping antioxidant parameter (calculated) in rats and correlate it with the development of free radical mediated diseases. Male Wistar rats were divided into two groups and pair fed for six weeks with low magnesium diet (70 mg/kg) and control diet (990 mg/kg) prepared synthetically. Deionized water was given ad libitum. Low magnesium diet caused a significant decrease in plasma and red blood cell magnesium levels. A marked increase in plasma malondialdehyde and corresponding decrease in total radical trapping antioxidant parameters (calculated) were observed in the low magnesium diet group than control group. The level of plasma glucose increased moderately in the low magnesium diet group. Hypertriglyceridemia and significantly decreased plasma HDL (high density lipoprotein)-cholesterol levels were observed in the low magnesium diet group. The results clearly demonstrate that magnesium deficiency is associated with increased oxidative stress through reduction in plasma antioxidants and increased lipid peroxidation suggesting that the increased oxidative stress may be due to increased susceptibility of body organs to free radical injury.  相似文献   

17.
Hyperglycemia leads to excess production of reactive oxygen species (ROS), lipid peroxidation and protein glycation that may impair cellular calcium homeostasis and results in calcium sequestration and dysfunction in diabetic tissues. Stobadine (ST) is a pyridoindole antioxidant has been postulated as a new cardio- and neuroprotectant. This study was undertaken to test the hypothesis that the treatment with ST inhibits calcium accumulation, reduces lipid peroxidation and protein glycation and can change Ca2+,Mg2+-ATPase activity in diabetic animals. The effects of vitamin E treatment were also evaluated and compared with the effects of combined treatment with ST. Diabetes was induced by streptozotocin (STZ, 55 mg/kg i.p.). Some of diabetic rats and their age-matched controls were treated orally with a low dose of ST (24.7 mg/kg/day), vitamin E (400-500 IU/kg/day) or ST plus vitamin E for 10 weeks. ST and vitamin E separately produced, in a similar degree, reduction in diabetes-induced hyperglycemia. Each antioxidant alone significantly lowered the levels of plasma lipid peroxidation, cardiac and hepatic protein glycation in diabetic rats but vitamin E treatment was found to be more effective than ST treatment alone. Diabetes-induced increase in plasma triacylglycerol levels was not significantly altered by vitamin E treatment but markedly reduced by ST alone. The treatment with each antioxidant completely prevented calcium accumulation in diabetic heart and liver. Microsomal Ca2+,Mg2+-ATPase activity significantly decreased in both tissues of untreated diabetic rats. ST alone significantly increased microsomal Ca2+,Mg2+-ATPase activity in the heart of normal rats. However, neither treatment with ST nor vitamin E alone, nor their combination did change cardiac Ca2+,Mg2+-ATPase activity in diabetic heart. In normal rats, neither antioxidant had a significant effect on hepatic Ca2+,Mg2+-ATPase activity. Hepatic Ca2+,Mg2+-ATPase activity of diabetic rats was not changed by single treatment with ST, while vitamin E alone completely prevented diabetes-induced inhibition in microsomal Ca2+,Mg2+-ATPase activity in liver. Combined treatment with ST and vitamin E provided more benefits in the reduction of hyperglycemia and lipid peroxidation in diabetic animals. This study describes potential mechanisms on cellular effects of ST in the presence of diabetes-induced hyperglycemia that may delay or inhibit the development of diabetic complications. The use of ST together with vitamin E can better control hyperglycemia-induced oxidative stress.  相似文献   

18.
In our study, we chose three different concentrations of FA (0, 5, and 10 ppm), and cytotoxic (lipid peroxidation and protein oxidation) and genotoxic assays (DNA damage) were carried out on plasma, blood, and liver cells of rats subjected to FA-inhalation treatment. The profiles of plasma protein changes determined using 2-DE analysis were also evaluated to identify potential toxicological monitoring markers in FA-exposed rats. Concern was raised that our genotoxic analyses did not follow previously published research data and that the results of our rat plasma proteomic studies were difficult to interpret because we did not directly determine the plasma concentration of FA. However, we had already determined the concentration of FA using HPLC in an exposure chamber to monitor FA inhalation concentrations. We suggest that our experimental design was suitable to determine the FA effects on rat using an inhalation chamber system. For the similarity of genotoxic effects in lymphocytes and liver cells, we chose to present our data on the general cytological toxic effects on lipid peroxidation and protein oxidation which revealed a similarity between plasma and liver cells of FA-exposed rats. We have shown strong correlations between genotoxicity and lipid peroxidation, and lipid peroxidation is known to mediate DNA damage in many in vitro, and in vivo studies. We are well aware of the 'implausibility' of leukemia induction by FA, but for precisely this reason, we feel the need for further study to prove the systemic genotoxic effects of FA.  相似文献   

19.
The statins, most commonly used in the treatment of hyperlipidemia, have certain beneficial effects including improved endothelial function, plaque stability and decreased oxidative stress and inflammation, beyond their lipid-lowering effect in plasma. We evaluated the pleiotropic impact of atorvastatin on erythrocyte structural/mechanical properties and lipid peroxidation in dyslipidemics. The study group included 44 patients with dyslipidemia and was divided into subgroups according to triglyceride and cholesterol levels as hypercholesterolemic (n?=?29) and mixed-type hyperlipidemic (n?=?15). Subjects were given 10?mg atorvastatin per day for 12?weeks. Changes in serum lipid composition, lipid contents, Na+/K+-ATPase activity and osmotic fragility in erythrocytes and oxidative stress parameters of erythrocytes and plasma were studied. Atorvastatin therapy improved the serum lipid profile of both subgroups. This alteration was accompanied by a decreased level of cholesterol in erythrocyte membranes. Moreover, enhanced activity of Na+/K+-ATPase in erythrocytes reflected the improvements in membrane lipids of both subgroups. However, a significant change was observed in osmotic fragility values of the mixed-typed dyslipidemic group. This treatment lowered the lipid peroxidation in plasma and erythrocytes and increased plasma total antioxidant capacity in all groups. The present study shows that the use of atorvastatin reversed the structural and functional features of erythrocyte membranes in dyslipidemic subjects. Also, hypolipidemic therapy had a beneficial impact on a balance between oxidant and antioxidant systems.  相似文献   

20.
Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in humans and animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd toxicity. Since kidney is the critical target of Cd toxicity, we carried out this study to investigate the effects of diallyl tetrasulfide (DTS), an organosulfur compound derived from garlic on Cd induced toxicity in the kidney of rats and also in the kidney cell line (vero cells). In experimental rats, subcutaneous administration of Cd (3 mg/kg bw/day) for 3 weeks induced renal damage, which was evident from significantly increased levels of serum urea and creatinine with significant decrease in creatinine clearance. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant decrease in nonenzymic antioxidants (total sulphydryl groups, reduced glutathione, vitamin C and vitamin E) and enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase) as well as glutathione metabolizing enzymes (glutathione reductase, and glucose-6-phosphate dehydrogenase) were also observed in Cd intoxicated rats. Coadministration of DTS (40 mg/kg bw/day) and Cd resulted in the reversal of the kidney function accompanied by a significant decrease in lipid peroxidation and increase in the antioxidant defense system. In vitro studies with vero cells showed that incubation of DTS (5-50 microg/ml) with Cd (10 microM) significantly reduced the cell death induced by Cd. DTS at 40 microg/ml effectively blocked the cell death and lipid peroxidation induced by Cd (10 microM) indicating its cytoprotective property. Further, the flow cytometric assessment on the level of intracellular reactive oxygen species using a fluorescent probe 2', 7'-dichlorofluorescein diacetate (DCF-DA) confirmed the Cd induced intracellular oxidative stress in vero cells, which was significantly suppressed by DTS (40 microg/ml). The histopathological studies in the kidney of rats also showed that DTS (40 mg/kg bw/day) markedly reduced the toxicity of Cd and preserved the architecture of renal tissue. The present study suggests that the cytoprotective potential of DTS in Cd toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in Cd induced renal damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号