首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Modes of Ca2+ activation by bradykinin, serotonin, and ATP and the possible receptor cross-talk were investigated in mouse neuroblastoma × rat glioma hybrid cells (108CC15) by monitoring fura-2 fluorescence in single cells. A transient rise of cytosolic Ca2+ activity was induced by short pulses of the hormones. Brief exposure of cells to ionomycin, which depletes intracellular Ca2+ stores, reduced the size of subsequent responses to bradykinin or ATP, but not to serotonin. Superfusion of the cells with Ca2+-free medium abolished the Ca2+ response to serotonin, whereas the responses to bradykinin and to ATP were only slightly reduced. This indicates that ATP, like bradykinin, Induces the release of Ca2+ from intracellular stores. Serotonin, in contrast, activates Ca2+ entry from the extracellular space. To investigate whether ATP releases Ca2+ from the same stores as bradykinin, we examined the interaction of the hormones by applying them consecutively. When ATP was applied after bradykinin, the nucleotide did not evoke any response, irrespective of the presence or absence of extracellular Ca2+. The application of ATP before that of bradykinin reduced the size of a following bradykinin-induced Ca2+ response in Ca2+-free medium, but not in Ca2+-containing medium. This suggests that bradykinin may interact with the ATP-activated mechanism by cross-desensitization. Possibly, bradykinin receptors are coupled to additional Ca2+ stores not accessible to ATP that are refilled by extracellular Ca2+. Cyclic AMP and cyclic GMP apparently do not affect the Ca2+ responses to bradykinin and serotonin, as shown by the lack of influence of preincubation of the cells with forskolin or sodium nitroprusside.  相似文献   

2.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

3.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

4.
Nitric oxide (NO) acts as a messenger molecule in the CNS by activating soluble guanylyl cyclase. Rat brain synaptosomal NO synthase was stimulated by Ca2+ in a concentration-dependent manner with half-maximal effects observed at 0.3 microM and 0.2 microM when its activity was assayed as formation of NO and L-citrulline, respectively. Cyclic GMP formation was apparently inhibited, however, at Ca2+ concentrations required for the activation of NO synthase, indicating a down-regulation of the signal in NO-producing cells. Purified synaptosomal guanylyl cyclase was not inhibited directly by Ca2+, and the effect was not mediated by a protein binding to guanylyl cyclase at low or high Ca2+ concentrations. In cytosolic fractions, the breakdown of cyclic GMP, but not that of cyclic AMP, was highly stimulated by Ca2+, and 3-isobutyl-1-methylxanthine did not block this reaction effectively. The effects of Ca2+ on cyclic GMP hydrolysis and on apparent guanylyl cyclase activities were abolished almost completely in the presence of the calmodulin antagonist calmidazolium, whose effect was attenuated by added calmodulin. Thus, a Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase is highly active in synaptic areas of the brain and may prevent elevations of intracellular cyclic GMP levels in activated, NO-producing neurons.  相似文献   

5.
Abstract: Voltage-dependent Ca2+ currents were measured in NG108-15 neuroblastoma × glioma hybrid cells transformed to express the rat μ-opioid receptor by the whole-cell configuration of the patch-clamp technique with Ba2+ as charge carrier. A μ-opioid receptor-selective agonist, [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin caused significant inhibition of voltage-dependent Ca2+ currents in μ-receptor-transformed NG108-15 cells but not in nontransfected or vector-transformed control cells. On the other hand, a δ-opioid receptor-selective agonist, [ d -penicillamine2, d -penicillamine5]enkephalin, induced inhibition of voltage-dependent Ca2+ currents in both control and μ-receptor-transformed cells, which is mediated by the δ-opioid receptor expressed endogenously in NG108-15 cells. The inhibition of voltage-dependent Ca2+ currents induced by [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin and [ d -penicillamine2, d -penicillamine5]enkephalin was reduced by pretreatment of the cells with pertussis toxin or ω-conotoxin GVIA. These results indicate that the μ-opioid receptor expressed from cDNA functionally couples with ω-conotoxin-sensitive N-type Ca2+ channels through the action of pertussis toxin-sensitive G proteins in NG108-15 cells.  相似文献   

6.
We investigated if stimulation of T-type Ca2+ channels with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2S), could cause neuronal differentiation of NG108-15 cells. Like dibutyryl cyclic AMP (db-cAMP), treatment with NaHS at 1.5–13.5 mM for 16 h enhanced neurite outgrowth in a concentration-dependent manner. Synergistic neuritogenic effect was obtained in the cells stimulated with NaHS in combination with db-cAMP at subeffective concentrations. Exposure to NaHS or db-cAMP for 2 days resulted in enhancement of expression of high-voltage-activated currents consisting of N-, P/Q-, L- and also other types, but not of T-type currents. Mibefradil, a pan-T-type channel blocker, abolished the neuritogenesis induced by NaHS, but not by db-cAMP. The NaHS-evoked neuritogenesis was also completely blocked by pretreatment with BAPTA/AM, a chelator of intracellular Ca2+, and by zinc chloride at a concentration known to selectively inhibit Cav3.2 isoform of T-type Ca2+ channels, but not Cav3.1 or Cav3.3. Further, l -ascorbate, recently proven to selectively inhibit Cav3.2, abolished the neuritogenic effect of NaHS, but not db-cAMP. Our data thus demonstrate that NaHS/H2S is a novel inducer of neuronal differentiation in NG108-15 cells, as characterized by neuritogenesis and expression of high-voltage-activated currents, and suggest the involvement of T-type Ca2+ channels, especially Cav3.2.  相似文献   

7.
The accumulation of inositol phosphates (IPs) in response to prostaglandins (PGs) was studied in NG108-15 cells preincubated with myo-[3H]inositol. As a positive control, bradykinin caused accumulation of IPs transiently at an early phase (within 1 min) and continuously during a late phase (15-60 min) of incubation in the cells. PGD2 and PGF2 alpha did not significantly cause the accumulation of IPs at an early phase but significantly stimulated inositol bisphosphate (IP2) and inositol monophosphate (IP) formation at late phase of incubation. The maximum stimulation was obtained at greater than 10(-7) M concentrations of these PGs, the levels being three-and twofold for IP2 and IP1, respectively. 9 alpha, 11 beta-PGF2 has a slight effect but PGE2 and the metabolites of PGD2 and PGF2 alpha have no effect up to 10(-6)M. The effects of PGD2 and PGF2 alpha were not additive, but the effect of each PG was additive to that of bradykinin at a late phase of incubation. Inositol 1-monophosphate was mainly identified in the stimulation by 10(-5) M PGD2 and 10(-5) M PGF2 alpha, whereas both inositol 1-monophosphate and inositol 4-monophosphate were produced in the stimulation by 10(5) M bradykinin. Depletion of extracellular Ca2+ diminished the stimulatory effect of PGD2 and PGF2 alpha and late-phase effect of bradykinin, but simple Ca2+ influx into the cells by high K+, ionomycin, or A23187 failed to cause such late-phase effects. These results suggest that PGD2 and PGF2 alpha specifically stimulate hydrolysis of inositol phospholipids.  相似文献   

8.
Abstract: δ-Opioids mobilize Ca2+ from intracellular stores in undifferentiated NG108-15 cells, but the mechanism involved remains unclear. Therefore, we examined the effect of [d -Pen2,5]enkephalin on inositol 1,4,5-trisphosphate formation in these cells. [d -Pen2,5]enkephalin caused a dose-dependent (EC50 = 3.1 nM) increase in inositol 1,4,5-trisphosphate formation (measured using a specific radioreceptor mass assay), which peaked (25.7 ± 1.2 pmol/mg of protein with 1 µM, n = 9) at 30 s and returned to basal levels (10.6 ± 0.9 pmol/mg of protein, n = 9) within 4–5 min. This response was fully naloxone (1 µM) reversible and pertussis toxin (100 ng/ml for 24 h) sensitive. Preincubation with Ni2+ (2.5 mM) or nifedipine (1 µM) had no effect on the [d -Pen2,5]enkephalin (1 µM)-induced inositol 1,4,5-trisphosphate response, and K+ (80 mM) was unable to stimulate inositol 1,4,5-trisphosphate formation, indicating Ca2+ influx-induced activation of phospholipase C is not involved. Preincubation with the protein kinase C inhibitor Ro 31-8220 (1 µM) enhanced, whereas acute exposure to phorbol 12,13-dibutyrate (1 µM) abolished, the [d -Pen2,5]enkephalin (0.1 µM)-induced inositol 1,4,5-trisphosphate response, suggesting protein kinase C exerts an autoinhibitory feedback action. [d -Pen2,5]Enkephalin also dose-dependently (EC50 = 2.8 nM) increased the intracellular [Ca2+], which was maximal (24 nM increase with 1 µM, n = 5) at 30 s. This close temporal and dose-response relationship strongly suggests that δ-opioid receptor-mediated increases in intracellular [Ca2+] results from inositol 1,4,5-trisphosphate-induced Ca2+ release from intracellular stores, in undifferentiated NG108-15 cells.  相似文献   

9.
Purified P400 protein was phosphorylated by both purified Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Because P400 protein was suggested to function as an integral membrane protein, we investigated the phosphorylation of P400 protein using crude mitochondrial and microsomal fractions (P2/P3 fraction). Incubation of the P2/P3 fraction from mouse cerebellum with cyclic AMP or the catalytic subunit of A-kinase stimulated the phosphorylation of P400 protein. The phosphorylation of P400 protein was not observed in the P2/P3 fraction from mouse forebrain. Cyclic AMP and A-kinase enhanced the phosphorylation of several proteins, including P400 protein, suggesting that P400 protein is one of the best substrates for A-kinase in the P2/P3 fraction. Although endogenous and exogenous CaM kinase II stimulated the phosphorylation of some proteins in the P2/P3 fraction, the phosphorylation of P400 protein was weak. Immunoprecipitation with the monoclonal antibody to P400 protein confirmed that the P400 protein itself was definitely phosphorylated by the catalytic subunit of A-kinase and CaM kinase II. A-kinase phosphorylated only the seryl residue in P400 protein. Immunoblot analysis of the cells in primary culture of mouse cerebellum confirmed the expression of P400 protein, which migrated at the same position on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that in the P2/P3 fraction. Incubation of the cultured cerebellar cells with [32P]orthophosphate resulted in the labeling of P400 protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The LAN-1 clone, a cell line derived from a human neuroblastoma, possesses muscarinic receptors. The stimulation of these receptors with increasing concentrations of carbachol (CCh; 1-1,000 microM) caused a dose-dependent increase of the intracellular free Ca2+ concentration ([Ca2+]i). This increase was characterized by an early peak phase (10 s) and a late plateau phase. The removal of extracellular Ca2+ reduced the magnitude of the peak phase to approximately 70% but completely abolished the plateau phase. The muscarinic-activated Ca2+ channel was gadolinium (Gd3+) blockade and nimodipine and omega-conotoxin insensitive. In addition, membrane depolarization did not cause any increase in [Ca2+]i. The CCh-induced [Ca2+]i elevation was concentration-dependently inhibited by pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, two rather selective antagonists of M1 and M3 muscarinic receptor subtypes, respectively, whereas methoctramine, an M2 antagonist, was ineffective. The coupling of M1 and M3 receptor activation with [Ca2+]i elevation does not seem to be mediated by a pertussis toxin-sensitive guanine nucleotide-binding protein or by the diacylglycerol-protein kinase C system. The mobilization of [Ca2+]i elicited by M1 and M3 muscarinic receptor stimulation seems to be dependent on an inositol trisphosphate-sensitive intracellular store. In addition, ryanodine did not prevent CCh-induced [Ca2+]i mobilization, and, finally, LAN-1 cells appear to lack caffeine-sensitive Ca2+ stores, because the methylxanthine was unable to elicit intracellular Ca2+ mobilization, under basal conditions, after a subthreshold concentration of CCh (0.3 microM), or after thapsigargin.  相似文献   

11.
Abstract: The effects of nitric oxide (NO)-generating agents on 45Ca2+ uptake in rat brain slices and cultured rat astrocytes were studied in the presence of monensin, which is considered to drive the Na+-Ca2+ exchanger in the reverse mode. Sodium nitroprusside (SNP) at >10 µ M increased monensin-stimulated Ca2+ uptake in the slices, although it did not affect high K+-stimulated Ca2+ uptake. Another NO donor, 3-morpholinosydnonimine, was effective. The effect of SNP was antagonized by hemoglobin (50 µ M ), a NO scavenger, and mimicked by 8-bromo-cyclic GMP (100 µ M ). In rat brain synaptosomes, SNP increased monensin-stimulated Ca2+ uptake, but it did not affect high K+-stimulated Ca2+ uptake. 8-Bromocyclic GMP, but not SNP, increased Na+-dependent Ca2+ uptake significantly in synaptic membrane vesicles in the absence of monensin. In cultured rat astrocytes, SNP and 8-bromo-cyclic GMP increased Ca2+ uptake in the presence of ouabain and monensin, which were required for the Ca2+ uptake in the cells. These findings suggest that NO stimulates the Na+-Ca2+ exchanger in neuronal preparations and astrocytes in a cyclic GMP-dependent mechanism.  相似文献   

12.
Abstract: In the presence of substance P (SP; 10 μM), serotonin (5-HT; 1 μM) triggered a cation permeability in cells of the hybridoma (mouse neuroblastoma X rat glioma) clone NG 108-15 that could be assessed by measuring the cell capacity to accumulate [14C]guanidinium for 10-15 min at 37°C. In addition to 5-HT (EC50, 0.33 μM), the potent 5-HT3 receptor agonists 2-methyl-serotonin, phenylbiguanide, and m-chlorophenylbiguanide, and quipazine, markedly increased [14C]guanidinium uptake in NG 108-15 cells exposed to 10 μM SP. In contrast, 5-HT3 receptor antagonists prevented the effect of 5-HT. The correlation (r= 0.97) between the potencies of 16 different ligands to mimic or prevent the effects of 5-HT on [14C]guanidinium uptake, on the one hand, and to displace [3H]zacopride specifically bound to 5-HT3 receptors on NG 108-15 cells, on the other hand, clearly demonstrated that [14C]guanidinium uptake was directly controlled by 5-HT3 receptors. Various compounds such as inorganic cations (La3+, Mn2+, Ba2+, Ni2+, and Zn2+), D-tubocurarine, and memantine inhibited [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT and SP, as expected from their noncompetitive antagonistic properties at 5-HT3 receptors. However, ethanol (100 mM), which has been reported to potentiate the electrophysiological response to 5-HT3 receptor stimulation, prevented the effects of 5-HT plus SP on [14C]guanidinium uptake. The cooperative effect of SP on this 5-HT3-evoked response resulted neither from an interaction of the peptide with the 5-HT3 receptor binding site nor from a possible direct activation of G proteins in NG 108-15 cells. Among SP derivatives, [D-Pro9]SP, a compound inactive at the various neurokinin receptor classes, was the most potent to mimic the stimulatory effect of SP on [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT. Although the cellular mechanisms involved deserve further investigations, the 5-HT-evoked [14C]guanidinium uptake appears to be a rapid and reliable response for assessing the functional state of 5-HT3 receptors in NG 108-15 cells.  相似文献   

13.
Characteristics of the increasing effect for the concentration of intracellular calcium ions ([Ca2+]i) by high-KCl application were investigated in the neuroblastoma×glioma hybrid NG108-15 cell line (NG108-15 cells). The present study confirmed that the increasing effect of [Ca2+]i by high-KCl application in single NG108-15 cells, differentiated with dibutyryl cAMP (Bt2cAMP), was significantly enhanced, compared to undifferentiated cells. The following observations were made at first: (1) The response to high-KCl application, in both undifferentiated and differentiated cells, was significantly inhibited by calciseptine (CaS), an L-type Ca2+ channel blocker, but not by N-, P- and R-type Ca2+ channel blockers. The IC50 values for CaS in both undifferentiated and differentiated cell was almost identical. (2) The inhibitory effect of CaS was irreversible. (3) The increasing effect for [Ca2+]i by high-KCl application was completely dependent on the presence of extracellular calcium ions. (4) The increased [Ca2+]i by high-KCl application under a plateau concentration was quickly decreased to basal levels when the high-KCl solution was exchanged for a high-KCl solution containing EGTA (without CaCl2). Together, these results suggest that the enhancement of the response effect of [Ca2+]i by high-KCl application in differentiated single NG108-15 cells was mainly due to the quantitative increase of L-type voltage-sensitive calcium channels (VSCCs), which were irreversibly inhibited by CaS.  相似文献   

14.
15.
Abstract: Extracellular ATP has neurotransmitter-like properties in the CNS and PNS that are mediated by a cell-surface P2 purinergic receptor. In the present study, we have extensively characterized the signal transduction pathways that are associated with activation of a P2U receptor in a cultured neuroblastoma × glioma hybrid cell line (NG108-15 cells). The addition of ≥1 μM ATP to NG108-15 cells caused a transient increase in [Ca2+]i that was inhibited by 40% when extracellular calcium was chelated by EGTA. ATP concentrations ≥500 μM also elicited a sustained increase in [Ca2+]i that was inhibited when extracellular calcium was chelated by EGTA. The increase in [Ca2+]i elicited by ATP occurred concomitantly with the hydrolysis off [32P]-phosphatidylinositol 4,5-bisphosphates and an increase in the level of inositol 1,4,5-trisphosphate. ATP also caused a time- and dose-dependent increase in levels of [3H]inositol monophosphates in lithium-treated cells. Separation of the inositol monophosphate isomers by ion chromatography revealed a specific increase in the level of inositol 4-monophosphate. The magnitude of the increase in [Ca2+]i elicited by ATP correlated with the concentration of the fully ionized form of ATP (ATP4-) in the medium and not with the concentration of magnesium-ATP (MgATP2-). Similar to ATP, UTP also induced polyphosphoinositide breakdown, inositol phosphate formation, and an increase in [Ca2+]i. ADP, ITP, TTP, GTP, ATP-γS, 2-methylthio ATP, β,γ-imidoATP or 3′-O-(4-benzoyl)benzoylATP, but not CTP, AMP, β,γ-methylene ATP, or adenosine, also caused an increase in [Ca2+]i. In cells labeled with [32P]Pi or [14C]-arachidonic acid, ATP caused a transient increase in levels of labeled phosphatidic acids, but had no effect on levels of arachidonic acid. The increase in phosphatidic acid levels elicited by ATP apparently was not due to activation of a phospholipase D because ATP did not induce the formation of phosphatidylethanol in [14C]myristic acid-labeled cells incubated in the presence of ethanol. These findings support the hypothesis that a P2 nucleotide receptor in NG108-15 cells is coupled to a signal transduction pathway involving the activation of a phospholipase C and a plasma membrane calcium channel, but not the activation of phospholipases A2 and D.  相似文献   

16.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

17.
The cytosolic free Ca2+ concentration ([Ca2+]in) in single cat and bovine adrenal chromaffin cells was measured to determine whether or not there was any correlation between the [Ca2+]in and the catecholamine (CA) secretion caused by muscarinic receptor stimulation. In cat chromaffin cells, methacholine (MCh), a muscarinic agonist, raised [Ca2+]in by activating both Ca2+ influx and intracellular Ca2+ mobilization with an accompanying CA secretion. In bovine cells, MCh elevated [Ca2+]in by mobilizing intracellular Ca2+ but did not cause CA secretion. The MCh-induced rise in [Ca2+]in in cat cells was much higher than that in bovine cells, but when Ca2+ influx was blocked, the rise was reduced, with a concomitant loss of secretion, to a level comparable to that in bovine cells. Intracellular Ca2+ mobilization due to muscarinic stimulation substantially increased secretion from depolarized bovine and cat cells, where a [Ca2+]in elevated above basal values was maintained by a continuous Ca2+ influx. These results show that Ca2+ released from internal stores is not effective in triggering secretion unless Ca2+ continues to enter across the plasma membrane, a conclusion suggesting that secretion depends on [Ca2+]in in a particular region of the cell.  相似文献   

18.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   

19.
Abstract: "Kalzium macht alles". With this sentence, the physiologist L. V. Heilbrunn described several decades ago what is still believed by many. The enormous attention this subject has received in the past 15 years has generated a vast amount of information which is helping us to understand how cells perceive and transduce a signal. This review focuses on some recent aspects of Ca2+ research and the perspectives that they open for future studies. However, Ca2+ is not the only element involved in signal transduction and its action depends on a complex network of signalling molecules, the role of which is discussed. Particular attention is given to the parallels emerging between plant and animal signalling and how we should explore them.  相似文献   

20.
Abstract: Cultured cerebellar granule cells become vulnerable to excitatory amino acids, especially to NMDA and kainate, by 9 days in vitro. In the same time, the sensitivity of cells to (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), in terms of AMPA-induced toxicity or 45Ca2+ uptake, was very low. The low AMPA responsiveness was due to receptor desensitization, because agents known to block desensitization, cyclothiazide and the lectins concanavalin A and wheat germ agglutinin, rendered granule cells vulnerable to AMPA and produced a pronounced stimulation of 45Ca2+ accumulation. 45Ca2+ influx was induced specifically by AMPA-receptor stimulation, because it was blocked virtually completely by 2,3-dihydroxy-6-nitro-7-sulfamoylbenzoquinoxaline (NBQX) and the benzodiazepine GYKI 52466 (selective non-NMDA receptor antagonists). Nevertheless, indirect routes activated by cellular responses to AMPA-receptor stimulation contributed significantly to the overall 45Ca2+ influx. These included Ca2+ uptake through NMDA-receptor channels, voltage-sensitive Ca2+ channels, and via Na+/Ca2+ exchange. However, nearly one-fifth of the total 45Ca2+ influx remained unaccounted for and this estimate was similar to 45Ca2+ influx observed under Na+-free conditions. This observation suggested that a significant proportion of the Ca2+ flux passes through the AMPA-receptor channel proper, a view supported by Co2+ uptake into nearly all granule cells on exposure to AMPA in the presence of cyclothiazide. Results are discussed in light of the reported AMPA receptor-subunit composition of cerebellar granule cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号