首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The cytochalasin B binding component of the human erythrocyte monosaccharide transport system has been purified. The preparation appears to contain one major protein with an apparent polypeptide chain molecular weight of 55,000 and about 0.4 binding sites per chain. Cytochalasin B binds to the reconstituted preparation with a dissociation constant of 1.3.10(-7) M, a value which is similar to that reported for the transport system in the intact erythrocyte.  相似文献   

2.
Tetragonal crystals of hen egg white lysozyme undergo a reversible transformation, accompanied by loss of water, when the relative humidity of the environment is reduced to about 90%. The structure of the low humidity form has been analyzed, using x-ray data collected at 88% relative humidity, in order to explore the variability in protein hydration caused by a change in the amount of water surrounding the protein molecule and the consequent conformational perturbations in the molecule. The structure has been refined by the restrained least-squares method to an R value of 0.162 for 6269 observed reflections in the 10-2.1-A resolution shell. The refined structure provides interesting examples for the variability in helical parameters, the role of interactions involving side chains and water in the stabilization of secondary structural features, and favorable specific hydration sites. The protein molecule as a whole moves slightly in the low humidity form from its position in the native crystals. The hydration shell tends to move along with the protein. Significant changes, however, occur in the hydration shell. These changes cause structural perturbations in the enzyme molecule, which are most pronounced in regions involved in substrate binding.  相似文献   

3.
Purification of the (Na+ + K+)-activated ATPase has been improved 2-fold the respect to both purity and yield over the previous method [Peterson, Ewing, Hootman & Conte (1978) J. Biol. Chem. 253, 4762-4770] by using Lubrol WX and non-denaturing concentrations of sodium dodecyl sulphate (SDS). The enzyme was purified 200-fold over the homogenate. The preparation had a specific activity of about 600 mumol of Pi/h per mg of protein, and was about 60% pure according to quantification of Coomassie Blue-stained SDS/polyacrylamide gels. The yield of purified enzyme was about 10 mg of protein per 100g of dry brine-shrimp (Artemia salina) cysts. The method is highly suitable for purification either on a small scale (10-25g of dry cysts) or on a large scale (900g of dry cysts) and methods are described for both. The large (Na+ + K+)-activated ATPase subunit (alpha-subunit) was isolated in pure form by SDS-gel filtration on Bio-Gel A 1.5m. The small subunit (beta-subunit) was eluted with other contaminating proteins on the Bio-Gel column, but was isolated in pure form by extraction from SDS/polyacrylamide gels. The amino acid and carbohydrate compositions of both subunits are reported. The alpha-subunit contained 5.2% carbohydrate by weight, and the beta-subunit 9.2%. Sialic acid was absent from both subunits.  相似文献   

4.
The cytochalasin B binding component of the human erythrocyte monosaccharide transport system has been purified. The preparation appears to contain one major protein with an apparent polypeptide chain molecular weight of 55 000 and about 0.4 binding sites per chain. Cytochalasin B binds to the reconstituted preparation with a dissociation constant of 1.3·10?7 M, a value which is similar to that reported for the transport system in the intact erythrocyte.  相似文献   

5.
Sarcoplasmic reticulum with calcium transport activity has been isolated from the cross-striated adductor muscle of the scallop, which lives in cold (< or = 20 degrees C) sea water, by using pH 7.0 buffer solution both to homogenize the tissue and to sediment the membrane fraction. The yield of the preparation was 60-100 mg protein from 100 g of the scallop muscle. Ca(2+)-activated ATPase protein of about 100 kDa accounted for 40-50% of the protein preparation. The maximum activities of ATP-dependent, oxalate-facilitated calcium accumulation and Ca(2+)-ATPase were observed at a pH of about 7.0 and temperature of 20-30 degrees C, and their values were about 2 mumol Ca2+/mg of protein/min and about 3 mumol ATP hydrolysis/mg of protein/min, respectively. At 0 degree C, 10-20% of these activities was maintained, while at 37 degrees C, the activities were irreversibly lost. The Ca(2+)-ATPase activity was half-maximally activated at about 0.3 microM [Ca2+]. The ATPase activity exhibited non-Michaelian behavior with respect to ATP, with two different Km values of approximately 10 microM and 0.1-0.3 mM. GTP, CTP, and ITP were also hydrolyzed by the preparation at a rate of 10-30% of that of ATP. The preparation was stored at -80 degrees C with retention of function for about a year.  相似文献   

6.
A piezoelectric immunobiosensor for atrazine in drinking water.   总被引:3,自引:0,他引:3  
A piezoelectric crystal immunobiosensor has been developed for the assay of atrazine herbicides in drinking water. Determinations from 0.03-100 micrograms l-1 (parts per billion) of atrazine can be made with a relative SD of about +/- 8%. Atrazine antibodies (polyclonal from sheep) are layered onto the gold electrode of 10 MHz piezoelectric crystals, which are precoated with protein A. The sensor is reversible, being reusable for about eight or nine assays.  相似文献   

7.
The water structure of rhombohedral 2 Zn insulin crystal which contains about 280 water molecules and 0.55-0.60 mol citrate molecules per dimer has been studied by X-ray crystallographic refinement with 1.1 A resolution data. Atomic parameters of 83 fully occupied and 258 partially occupied water molecules and 0.3 mol of citrate were obtained. Full matrix least-squares method with isotropic temperature factor was used for the refinement of partially occupied water molecules. The water molecules in this crystal exist in one of the three states: fully occupied water, partially occupied water and water continuum, and a schematic model of water structure in protein crystal was proposed. The flexibility of water molecules is described.  相似文献   

8.
The flavoenzyme d-aspartate oxidase from beef kidney (DASPO, EC 1.4. 3.1) has been overexpressed in Escherichia coli. A purification procedure, faster than the one used for the enzyme from the natural source (bDASPO), has been set up yielding about 2 mg of pure recombinant protein (rDASPO) per each gram of wet E. coli paste. rDASPO has been shown to possess the same general biochemical properties of bDASPO, except that the former contains only FAD, while the latter is a mixture of two forms, one active containing FAD and one inactive containing 6-OH-FAD (9-20% depending on the preparation). This results in a slightly higher specific activity (about 15%) for rDASPO compared to bDASPO and in facilitated procedures for apoprotein preparation and reconstitution. Redox potentials of -97 mV and -157 mV were determined for free and l-(+)-tartrate complexed DASPO, respectively, in 0.1 M KPi, pH 7.0, 25 degrees C. The large positive shift in the redox potential of the coenzyme compared to free FAD (-207 mV) is in agreement with similar results obtained with other flavooxidases. rDASPO has been used to assess a possible oxidative activity of the enzyme towards a number of compounds used as agonists or antagonists of neurotransmitters, including d-aspartatic acid, d-glutamic acid, N-methyl-d-aspartic acid, d,l-cysteic acid, d-homocysteic acid, d, l-2-amino-3-phosphonopropanoic acid, d-alpha-aminoadipic acid, d-aspartic acid-beta-hydroxamate, glycyl-d-aspartic acid and cis-2, 3-piperidine dicarboxylic acid. Kinetic parameters for each substrate in 50 mM KPi, pH 7.4, 25 degrees C are reported.  相似文献   

9.
The gene for bovine interphotoreceptor retinoid-binding protein (IRBP) has been cloned, and its nucleotide sequence has been determined. The IRBP gene is about 11.6 kilobase pairs (kb) and contains four exons and three introns. It transcribed into a large mRNA of approximately 6.4 kb and translated into a large protein of 145,000 daltons. To prove the identity of the genomic clone, we determined the protein sequence of several tryptic and cyanogen bromide fragments of purified bovine IRBP protein and localized them in the protein predicted from its nucleotide sequence. There is a 4-fold repeat structure in the protein sequence with 30-40% sequence identity and many conservative substitutions between any two of the four protein repeats. The third and fourth repeats are the most similar pair. All three of the introns in the IRBP gene fall in the fourth protein repeat. Two of the exons, the first and the fourth, are large, 3173 and 2447 bases, respectively. The introns are each about 1.5-2.2 kb long. The human IRBP gene has a sequence that is similar to one of the introns from the bovine gene. The unexpected gene structure and protein repeat structure in the bovine gene lead us to propose a model for the evolution of the IRBP gene.  相似文献   

10.
Magic-angle spinning solid-state NMR has been applied to study CBM3b–Cbh9A (CBM3b), a cellulose binding module protein belonging to family 3b. It is a 146-residue protein having a unique nine-stranded β-sandwich fold, in which 35 % of the structure is in a β-sheet conformation and the remainder of the protein is composed of loops and unstructured regions. Yet, the protein can be crystalized and it forms elongated needles. Close to complete chemical shift assignment of the protein was obtained by combining two- and three-dimensional experiments using a fully labeled sample and a glycerol-labeled sample. The use of an optimized protocol for glycerol-based sparse labeling reduces sample preparation costs and facilitates the assignment of the large number of aromatic signals in this protein. Conformational analysis shows good correlation between the NMR-predicted secondary structure and the reported X-ray crystal structure, in particular in the structured regions. Residues which show high B-factor values are situated mainly in unstructured regions, and are missing in our spectra indicating conformational flexibility rather than heterogeneity. Interestingly, long-range contacts, which could be clearly detected for tyrosine residues, could not be observed for aromatic phenylalanine residues pointing into the hydrophobic core, suggesting possible high ring mobility. These studies will allow us to further investigate the cellulose-bound form of CBM proteins.  相似文献   

11.
1. A soluble protein with a molecular weight of 11-12-10(3) has been isolated from bovine-heart mitochondria, which stimulates the following ATP-dependent reactions of submitochondrial particles treated with 0.6 mM EDTA and 1 M NH4OH: reverse electron transfer from succinate to NAD, transhydrogenation from NADH to NADP, and ATP-Pi exchange. The factor has no effect on the NADH oxidase, succinate oxidase and ATPase activities of the particles. 2. The stimulatory effect of the factor in the ATP-dependent reduction of NAD by succinate is 12 mumol-min-1-mg-1 of the factor protein. However, the NH4OH-EDTA treated particles are saturated for maximal activation of the above reaction by very small amounts of the factor (about 20-40 mug factor per mg particle). 3. Electrophoresis of the factor preparation on polyacrylamide gels showed a single protein band plus a nonprotein material which moved at the dye front and was weakly stained with Coomassie Blue. The protein was shown to be required for activation of the particles; whether the fast-moving, nonprotein material is also required is not known. 4. The factor is inhibited by mercurials and N-ethylmaleimide. The former, but not the latter, inhibition is completely reversed by 1,4-dithiothreitol. 5. The NH4OH-EDTA treated particles are also stimulated by rutamycin up to about 0.1 nmol of rutamycin per mg particle; higher rutamycin concentrations inhibit. Depending on the particle preparation, the factor stimulates up to about 3 nmol per mg particle, but does not inhibit at higher concentrations. In addition, under certain conditions in which appropriate concentrations of rutamycin fail to stimulate the particles, the factor still does.  相似文献   

12.
Dielectric spectroscopy with microwaves in the frequency range between 0.2 and 20 GHz was used to study the hydration of myosin subfragment 1 (S1). The data were analyzed by a method recently devised, which can resolve the total amount of water restrained by proteins into two components, one with a rotational relaxation frequency (fc) in the gigahertz region (weakly restrained water) and the other with lower fc (strongly restrained water). The weight ratio of total restrained water to S1 protein thus obtained (0.35), equivalent to 2100 water molecules per S1 molecule, is not much different from the values (0.3-0.4) for other proteins. The weakly restrained component accounts for about two-thirds of the total restrained water, which is in accord with the number of water molecules estimated from the solvent-accessible surface area of alkyl groups on the surface of the atomic model of S1. The number of strongly restrained water molecules coincides with the number of solvent-accessible charged or polar atoms. The dynamic behavior of the S1-restrained water during the ATP hydrolysis was also examined in a time-resolved mode. The result indicates that when S1 changes from the S1.ADP state into the S1.ADP.P1 state (ADP release followed by ATP binding and cleavage), about 9% of the weakly restrained waters are released, which are restrained again on slow P1 release. By contrast, there is no net mobilization of strongly restrained component. The observed changes in S1 hydration are quantitatively consistent with the accompanying large entropy and heat capacity changes estimated by calorimetry (Kodama, 1985), indicating that the protein surface hydrophobicity change plays a crucial role in the enthalpy-entropy compensation effects observed in the steps of S1 ATP hydrolysis.  相似文献   

13.
X-ray scattering data and electron microscope observations are presented for bromegrass mosaic virus. Its radial density distribution is obtained from the Fourier transform of the amplitudes of the scattered x-rays. The results indicate that the virus is 260 A in diameter, it has an almost empty central cavity which is about 80 A in diameter, and the regions occupied by RNA and protein are approximately equal in average density. Electron micrographs of negatively stained preparations also give an outside diameter of 260 A and indicate that there is a central region about 90 A in diameter into which uranyl acetate can penetrate. Positively stained preparations indicate that the nucleic acid is concentrated in a shell-shaped region which is in turn surrounded by a shell of protein. In order for the RNA and protein regions to have the same average electron density the RNA must have a hydration of 1.29 gm of water per gm of RNA and the protein must have a hydration of 0.24 gm of water per gm of protein.  相似文献   

14.
MICROSOMAL NUCLEOPROTEIN PARTICLES FROM PEA SEEDLINGS   总被引:13,自引:2,他引:11       下载免费PDF全文
Ultracentrifugal analysis of an extract of pea epicotyls, previously freed of debris and larger particles by centrifugation at 40,000 g for 10 minutes, has revealed the presence of a major component which possesses a sedimentation coefficient of 74 S. This component constitutes about 25 per cent of the TCA-precipitable material in the clarified epicotyl extract and is estimated to make up 1 to 2 per cent of the dry weight of the original tissue. In size, chemical composition, and morphology, the 74 S component resembles the nucleoproteins of the microsomes from animal tissues. The 74 S component of pea epicotyl extracts has been purified by repeated cycles of differential centrifugation to yield a preparation which is 80 per cent homogeneous in the analytical ultracentrifuge. It has been found to contain 30 to 37 per cent RNA as judged by a variety of analytical techniques. Approximately 55 per cent of the weight of the material is protein and a further 4.5 per cent phospholipide. Electron micrographs of air-dried specimens of the purified preparation show the 74 S constituent to be flattened spheres with an average height of 180 A and an average diameter of approximately 280 A. The molecular weight of the 74 S particles is computed from sedimentation, viscosity, and partial specific volume data to be 4.5 million ± 10 per cent in agreement with the value estimated from electron micrographs. The 74 S or microsomal component of pea epicotyls is rapidly aggregated in the presence of low concentrations of Mg ions or by somewhat higher concentrations of Ca or K salts. ATP on the contrary causes resolution of electrolyte-induced microsomal aggregates with simultaneous degradation of the particles to an ultracentrifugally inhomogeneous mixture of lower molecular weight materials.  相似文献   

15.
We have recently described a preparation of junctional terminal cisternae (JTC) from fast skeletal muscle of rabbit hind leg. The fraction differs from other heavy sarcoplasmic reticulum (SR) fractions in that it contains a substantial amount of junctional face membrane (JFM) (15-20% of the membrane) with morphologically well-defined junctional feet structures. In common with other heavy SR preparations, it contains predominantly the calcium pump membrane (80-85% of the membrane) and compartmental contents (CC), consisting mainly of calcium-binding protein (calsequestrin). In this study, a modified procedure for the preparation of JTC from frozen rabbit back muscle is described. The yield is substantially greater (threefold per weight of muscle), yet retaining characteristics similar to JTC from fresh hind leg muscles. Methodology has been developed for the disassembly of the JTC. This is achieved by selectively extracting the calcium pump membrane with 0.5% Triton X-100 in the presence of 1 mM CaCl2 to yield a complex of JFM with CC. The CC are then solubilized in the presence of EDTA to yield JFM. This fraction contains unidirectionally aligned junctional feet structures protruding from the cytoplasmic face of the membrane with repeat spacings comparable to that observed in JTC. The JFM contains 0.16 mumol phosphorus (lipid) per milligram protein. Characteristic proteins include 340 and 79-kD bands, a doublet at 28 kD, and a component that migrates somewhat slower than or equivalent to the calcium pump protein. Approximately 10% of the calcium-binding protein remains bound to the JFM after EDTA extraction, indicating the presence of a specific binding component in the JFM. The JFM, which is involved in junctional association with transverse tubule and likely in the Ca2+ release process in excitation-contraction coupling, is now available in the test tube.  相似文献   

16.
The crystal structure of the 252-residue lumen-side domain of reduced cytochrome f, a subunit of the proton-pumping integral cytochrome b6f complex of oxygenic photosynthetic membranes, was determined to a resolution of 1.96 A from crystals cooled to -35 degrees. The model was refined to an R-factor of 15.8% with a 0.013-A RMS deviation of bond lengths from ideality. Compared to the structure of cytochrome f at 20 degrees, the structure at -35 degrees has a small change in relative orientation of the two folding domains and significantly lower isotropic temperature factors for protein atoms. The structure revealed an L-shaped array of five buried water molecules that extend in two directions from the N delta 1 of the heme ligand His 25. The longer branch extends 11 A within the large domain, toward Lys 66 in the prominent basic patch at the top of the large domain, which has been implicated in the interaction with the electron acceptor, plastocyanin. The water sites are highly occupied, and their temperature factors are comparable to those of protein atoms. Virtually all residues that form hydrogen bonds with the water chain are invariant among 13 known cytochrome f sequences. The water chain has many features that optimize it as a proton wire, including insulation from the protein medium. It is suggested that this chain may function as the lumen-side exit port for proton translocation by the cytochrome b6f complex.  相似文献   

17.
The cold non-depolymerizable fractions obtained during the standard procedure for the isolation of microtubules from ox brain stem-cerebral hemispheres and spinal cord have been studied. The cerebral-hemisphere preparation was composed of 10-nm filaments but also contained large amounts of membranes. The polypeptide content included tubulin, microtubule-associated proteins and minor proteins corresponding to the neurofilament triplet of proteins of mol.wt. 210 000, 160 000 and 70 000 respectively. The brain-stem preparation contained more 10-nm filaments than membranes. The polypeptide content consisted of the neurofilament triplet (35%), tubulin (30%) and minor proteins. In contrast, the spinal-cord preparation was mainly composed of 10-nm filaments, free of membranes and containing essentially the neurofilament protein triplet (64%). These filaments appeared very similar to the peripheral-nervous-system neurofilaments described by several authors. Since the best neurofilament from the central nervous system often contained less than 15% of the neurofilament protein triplet, our spinal-cord preparation is an improvement on the usual neurofilament preparation. This simple and rapid method gave large amounts of 10-nm filaments (100 mg per 100 g of spinal cord) characterized by the absence of membranous material, a low content of tubulin and the 50 000-mol.wt.-protein component, and a high content of neurofilament peptides. Thus, the presence of tubulin in 10-nm filament preparations seems to be related to the contaminant membranous material and not to be linked to the interaction in vitro of tubulin or microtubules with neurofilaments, as has been suggested previously.  相似文献   

18.
Short-column sedimentation equilibrium methods have been applied for the first time to tobacco mosaic virus (TMV) protein (0.1 M ionic strength orthophosphate) at pH 6.5 and at pH 7.0 to estimate molecular weights. Previous sedimentation velocity experiments at pH 6.5, 20 degrees C have led to the conclusion that the major boundary with an S0(20),w value of 24.4 +/- 0.1 S consists of a distribution of polymers which are mainly three-turn, 48-51-subunit helical rod aggregates. The directly measured z-average molecular weights together with sedimentation velocity data are entirely consistent with this assignment of a three-turn aggregate. Molecular weights have also been determined under two conditions where a large mass fraction of the protein sediments with an S0(20),w value of 20.3 +/- 0.2 S. At pH 6.5, 6-8 degrees C, the aggregates in this boundary are metastable and correspond to 50-60% of the preparation. At pH 7.0, 20 degrees C at equilibrium, 65-75% of the protein sediments at 20.3 S. The 20.3S boundary is very similar under both conditions and is interpreted as being composed of a distribution of protein aggregates centered about 39 +/- 2 subunits. This result is important in the interpretation of previous kinetic measurements of TMV self-assembly. The current view is that the 34-subunit structure of TMV protein, in the form of a cylindrical disk which is made up of two 17-subunit layers and has been characterized in single-crystal X-ray diffraction studies, plays a central role in the initial binding steps with RNA. The present results are not consistent with the view that there is a significant concentration of the TMV protein disk structure in solution under the usual conditions of TMV self-assembly.  相似文献   

19.
Two molecular dynamics simulations of 5 ns each have been carried out for rat intestinal fatty acid binding protein, in apo-form and with bound palmitate. The fatty acid and a number of water molecules are encapsulated in a large interior cavity of the barrel-shaped protein. The simulations are compared to experimental data and analyzed in terms of root mean square deviations, atomic B-factors, secondary structure elements, hydrogen bond patterns, and distance constraints derived from nuclear Overhauser experiments. Excellent agreement is found between simulated and experimental solution structures of holo-FABP, but a number of differences are observed for the apo-form. The ligand in holo-FABP shows considerable displacement after about 1.5 ns and displays significant configurational entropy. A novel computational approach has been employed to identify internal water and to capture exchange pathways. Orifices in the portal and gap regions of the protein, discussed in the experimental literature, have been confirmed as major openings for solvent exchange between the internal cavity and bulk water. A third opening on the opposite side of the barrel experiences significant exchange but it does not provide a pathway for further passage to the central cavity. Internal water is characterized in terms of density distributions, interaction energies, mobility, protein contact times, and water molecule coordination. A number of differences are observed between the apo and holo-forms and related to differences in the protein structure. Solvent inside apo-FABP, for example, shows characteristics of a water droplet, while solvent in holo-FABP benefits from interactions with the ligand headgroup and slightly stronger interactions with protein residues.  相似文献   

20.
The solvent structure in orthorhombic crystals of bovine trypsin has been independently determined by X-ray diffraction to 1.35 A resolution and by neutron diffraction to 2.1 A resolution. A consensus model of the water molecule positions was obtained using oxygen positions identified in the electron density map determined by X-ray diffraction, which were verified by comparison to D2O-H2O difference neutron scattering density. Six of 184 water molecules in the X-ray structure, all with B-factors greater than 50 A2, were found to be spurious after comparison with neutron results. Roughly two-thirds of the water of hydration expected from thermodynamic data for proteins was localized by neutron diffraction; approximately one-half of the water of hydration was located by X-ray diffraction. Polar regions of the protein are well hydrated, and significant D2O-H2O difference density is seen for a small number of water molecules in a second shell of hydration. Hydrogen bond lengths and angles calculated from unconstrained refinement of water positions are distributed about values typically seen in small molecule structures. Solvent models found in seven other bovine trypsin and trypsinogen and rat trypsin structures determined by X-ray diffraction were compared. Internal water molecules are well conserved in all trypsin structures including anionic rat trypsin, which is 65% homologous to bovine trypsin. Of the 22 conserved waters in trypsin, 19 were also found in trypsinogen, suggesting that they are located in regions of the apoprotein that are structurally conserved in the transition to the mature protein. Seven waters were displaced upon activation of trypsinogen. Water structure at crystal contacts is not generally conserved in different crystal forms. Three groups of integral structural water molecules are highly conserved in all solvent structures, including a spline of water molecules inserted between two beta-strands, which may resemble an intermediate in the formation of beta sheets during the folding of a protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号