首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A stimulatory role for cGMP-dependent protein kinase in platelet activation   总被引:20,自引:0,他引:20  
Li Z  Xi X  Gu M  Feil R  Ye RD  Eigenthaler M  Hofmann F  Du X 《Cell》2003,112(1):77-86
It is currently accepted that cGMP-dependent protein kinase (PKG) inhibits platelet activation. Here, we show that PKG plays an important stimulatory role in platelet activation. Expression of recombinant PKG in a reconstituted cell model enhanced von Willebrand factor (vWF)-induced activation of the platelet integrin alpha(IIb)beta(3). PKG knockout mice showed impaired platelet responses to vWF or low doses of thrombin and prolonged bleeding time. Human platelet aggregation induced by vWF or low-dose thrombin was inhibited by PKG inhibitors but enhanced by cGMP. Furthermore, a cGMP-enhancing agent, sildenafil, promoted vWF- or thrombin-induced platelet aggregation. The cGMP-stimulated platelet responses are biphasic, consisting of an initial transient stimulatory response that promotes platelet aggregation and a subsequent inhibitory response that limits the size of thrombi.  相似文献   

2.
The amino acid sequence at the ATP-binding site on the cGMP-dependent protein kinase has been determined. For this determination the enzyme was labeled covalently by 5'-p-fluorosulfonyl[14C]benzoyladenosine and fragmented using cyanogen bromide or digested by trypsin after succinylation. The 14C-labeled peptides were purified by gel filtration and high performance liquid chromatography. The amino acid sequence around the site was found to be: -Val-Glu-Leu-Val-Gln-Leu-Lys-Ser-Glu-Glu-Ser-Lys-Thr-Phe-Ala-Met-*Lys-Ile-Leu-Lys--Lys-Arg-His-Ile-Val-Asp-Thr-Arg-Gln-Gln-Glu-His-Ile-Arg-Ser-Glu-Lys-, in which *Lys is the lysine residue that was modified by the affinity reagent. When this sequence was compared with that of the ATP-binding site of the catalytic subunit of cAMP-dependent protein kinase, a high degree of structural homology was observed for this site in the two proteins.  相似文献   

3.
An assay has been developed using parasite-specific incorporation of 3H-uracil to assess the intracellular growth of Eimeria tenella in vitro. As shown by both scintillation counts and autoradiography, 3H-uracil was incorporated specifically into intracellular parasites from the onset of infection and continued throughout development of the first generation schizonts. Mature schizonts and first generation merozoites did not continue to incorporate additional 3H-uracil, indicating that RNA synthesis had halted in these stages. Based on these findings, a semi-automated microscale uracil incorporation assay was developed to determine parasite viability. This method should be useful for biochemical studies with intracellular parasites and for screening compounds for anticoccidial activity. The ease, rapidity, and quantitative nature of this assay contrasts favorably with standard morphometric approaches of determining parasite development. In addition, parallel studies using host cell incorporation of 3H-uridine have been introduced as a method of determining whether antiparasitic activity is direct or indirect in relation to effects on the host cell.  相似文献   

4.
The allosteric regulation of binding to and the activation of cGMP-dependent protein kinase (cGMP kinase) was studied under identical conditions at 30 degrees C using three forms of cGMP-kinase which differed in the amino-terminal segment, e.g. native cGMP kinase, phosphorylated cGMP kinase which contained 1.4 +/- 0.4 mol phosphate/subunit and constitutively active cGMP kinase which lacked the amino-terminal dimerization domain. These three enzyme forms have identical kinetic constants, e.g. number of cGMP-binding sites, Km values for MgATP and the heptapeptide kemptide, and Vmax values. In the native enzyme, MgATP decreases the affinity for binding site 1. This effect is abolished by 1 M NaCl. In contrast, high concentrations of Kemptide increase the affinity of binding site 2 about fivefold. Under the latter conditions, identical Kd values of 0.2 microM were obtained for sites 1 and 2. Salt, MgATP and Kemptide do not affect the binding kinetics of the phosphorylated or the constitutively active enzyme, suggesting that allosteric regulation depends solely on the presence of a native amino-terminal segment. Cyclic GMP activates the native enzyme at Ka values which are identical with the Kd values for both binding sites. The activation of cGMP-dependent protein kinase is noncooperative but the Ka value depends on the substrate peptide concentration. These results show that the activity of cGMP kinase is primarily regulated by conformational changes within the amino-terminal domain.  相似文献   

5.
For the type I cGMP-dependent protein kinases (cGKIalpha and cGKIbeta), a high affinity interaction exists between the C2 amino group of cGMP and the hydroxyl side chain of a threonine conserved in most cGMP binding sites. To examine the effect of this interaction on ligand binding and kinase activation in the type II isozyme of cGMP-dependent protein kinase (cGKII), alanine was substituted for the conserved threonine or serine. cGKII was found to require the C2 amino group of cGMP and its cognate serine or threonine hydroxyl for efficient cGMP activation. Of the two binding sites, disruption of cGMP-specific binding in the NH(2)-terminal binding site had the greatest effect on cGMP-dependent kinase activation, like cGKI. However, ligand dissociation studies showed that the location of the rapid and slow dissociation sites of cGKII was reversed relative to cGKI. Another set of mutations that prevented cyclic nucleotide binding demonstrated the necessity of the NH(2)-terminal, rapid dissociation binding site for cyclic nucleotide-dependent activation of cGKII. These findings suggest distinct mechanisms of activation for cGKII and cGKI isoforms. Because cGKII mediates the effects of heat-stable enterotoxins via the cystic fibrosis transmembrane regulator Cl(-) channel, these findings define a structural target for drug design.  相似文献   

6.
Two cDNA codings for glycolytic enzymes were cloned from a cDNA library constructed from the schizont stage of the avian parasite Eimeria tenella. Enolase and pyruvate kinase cDNA were fully sequenced and compared with sequences of enzymes from other organisms. Although these enzymes were already detected in the sporozoite stage, their expression was enhanced during the first schizogony in accordance with the anaerobic conditions of this part of the life cycle of the parasite. Under activating conditions, microscopic observations suggest that these glycolytic enzymes were relocalised inside sporozoites and moreover were in part secreted. The enzymes were also localised at the apex of the first generation of merozoites. Enolase was partly observed inside the nucleus of sporozoites and schizonts. Taken together, these results suggest that glycolytic enzymes not only have a function in glycolysis during anaerobic intracellular stages but may also participate in the invasion process and, for enolase, in the control of gene regulation.  相似文献   

7.
cGMP-dependent protein kinase binds 4 mol cGMP/mol enzyme to two different sites. Binding to site 1 (apparent Kd 17 nM) shows positive cooperativity and is inhibited by Mg . ATP, whereas binding to site 2 (apparent Kd 100-150 nM) is non-cooperative and not affected by Mg . ATP. Autophosphorylation of the enzyme abolishes the cooperative binding to site 1 and the inhibitory effect of Mg . ATP. The association (K1) and dissociation (K-1) rate constant for site 2 and K1 for site 1 are not affected significantly by Mg . ATP or autophosphorylation. The dissociation rate from site 1 measured in the presence of 1 mM unlabelled cGMP is decreased threefold and over tenfold by Mg . ATP and autophosphorylation, respectively. In contrast, the dissociation rate from site 1 measured after a 500-fold dilution of the enzyme-ligand complex is 100-fold faster than that determined in the presence of 1 mM cGMP and is only slightly influenced by Mg . ATP or autophosphorylation. Only Kd values calculated with the latter K-1 values are similar to the Kd values obtained by equilibrium binding. These results suggest that autophosphorylation of cGMP-dependent protein kinase affects mainly the binding characteristics of site 1.  相似文献   

8.
Dedicated to Professor Dr. H.-D. Söling, Göttingen (FRG), on the occasion of his sixtieth birthday.  相似文献   

9.
The cGMP-dependent protein kinase (PKG) serves as an integral component of second messenger signaling in a number of biological contexts including cell differentiation, memory, and vasodilation. PKG is homodimeric and large conformational changes accompany cGMP binding. However, the structure of PKG and the molecular mechanisms associated with protomer communication following cGMP-induced activation remain unknown. Here, we report the 2.5?? crystal structure of a regulatory domain construct (aa 78-355) containing both cGMP binding sites of PKG Iα. A distinct and segregated architecture with an extended central helix separates the two cGMP binding domains. Additionally, a previously uncharacterized helical domain (switch helix) promotes the formation of a hydrophobic interface between protomers. Mutational disruption of this interaction in full-length PKG implicates the switch helix as a critical site of dimer communication in PKG biology. These results offer new structural insight into the mechanism of allosteric PKG activation.  相似文献   

10.
An increase in cellular levels of cyclic nucleotides activates serine/threonine-dependent kinases that lead to diverse physiological effects. Recently we reported the activation of the p38 mitogen-activated protein kinase (MAPK) pathway in neutrophils by a cGMP-dependent mechanism. In this study we demonstrated that exogenously supplied nitric oxide leads to activation of p38 MAPK in 293T fibroblasts. Phosphorylation of p38 corresponded with an increase in ATF-2-dependent gene expression. The effect of nitric oxide was mimicked by addition of 8-bromo-cGMP, indicating that activation of soluble guanylyl cyclase was involved. The importance of cGMP-dependent protein kinase in the activation of p38 MAPK by nitric oxide in 293T cells was assessed in a transfection based assay. Overexpression of cGMP-dependent protein kinase-1alpha caused phosphorylation of p38 in these cells and potentiated the effectiveness of cGMP. Overexpression of a catalytically inactive mutant form of this enzyme (T516A) blocked the ability of both nitric oxide and 8-bromo-cGMP to activate p38 as measured by both p38 phosphorylation and ATF-2 driven gene expression. Together, these data demonstrate that nitric oxide stimulates a novel pathway leading to activation of p38 MAPK that requires activation of cGMP-dependent protein kinase.  相似文献   

11.
A role for coccidian cGMP-dependent protein kinase in motility and invasion   总被引:9,自引:0,他引:9  
The coccidian parasite cGMP-dependent protein kinase is the primary target of a novel coccidiostat, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl] pyridine (compound 1), which effectively controls the proliferation of Eimeria tenella and Toxoplasma gondii parasites in animal models. The efficacy of compound 1 in parasite-specific metabolic assays of infected host cell monolayers is critically dependent on the timing of compound addition. Simultaneous addition of compound with extracellular E. tenella sporozoites or T. gondii tachyzoites inhibited [3H]-uracil uptake in a dose-dependent manner, while minimal efficacy was observed if compound addition was delayed, suggesting a block in host cell invasion. Immunofluorescence assays confirmed that compound 1 blocks the attachment of Eimeria sporozoites or Toxoplasma tachyzoites to host cells and inhibits parasite invasion and gliding motility. Compound 1 also inhibits the secretion of micronemal adhesins (E. tenella MIC1, MIC2 and T. gondii MIC2), an activity closely linked to invasion and motility in apicomplexan parasites. The inhibition of T. gondii MIC2 adhesin secretion by compound 1 was not reversed by treatment with calcium ionophores or by ethanol (a microneme secretagogue), suggesting a block downstream of calcium-dependent events commonly associated with the discharge of the microneme organelle in tachyzoites. Transgenic Toxoplasma strains expressing cGMP-dependent protein kinase mutant alleles that are refractory to compound 1 (including cGMP-dependent protein kinase knock-out lines complemented by such mutants) were used as tools to validate the potential role of cGMP-dependent protein kinase in invasion and motility. In these strains, parasite adhesin secretion, gliding motility, host cell attachment and invasion displayed a reduced sensitivity to compound 1. These data clearly demonstrate that cGMP-dependent protein kinase performs an important role in the host-parasite interaction.  相似文献   

12.
Although it is acknowledged that genetic variation contributes to individual differences in thermotolerance, the specific genes and pathways involved and how they are modulated by the environment remain poorly understood. We link natural variation in the thermotolerance of neural function and behavior in Drosophila melanogaster to the foraging gene (for, which encodes a cGMP-dependent protein kinase (PKG)) as well as to its downstream target, protein phosphatase 2A (PP2A). Genetic and pharmacological manipulations revealed that reduced PKG (or PP2A) activity caused increased thermotolerance of synaptic transmission at the larval neuromuscular junction. Like synaptic transmission, feeding movements were preserved at higher temperatures in larvae with lower PKG levels. In a comparative assay, pharmacological manipulations altering thermotolerance in a central circuit of Locusta migratoria demonstrated conservation of this neuroprotective pathway. In this circuit, either the inhibition of PKG or PP2A induced robust thermotolerance of neural function. We suggest that PKG and therefore the polymorphism associated with the allelic variation in for may provide populations with natural variation in heat stress tolerance. for's function in behavior is conserved across most organisms, including ants, bees, nematodes, and mammals. PKG's role in thermotolerance may also apply to these and other species. Natural variation in thermotolerance arising from genes involved in the PKG pathway could impact the evolution of thermotolerance in natural populations.  相似文献   

13.
Changes in proteins during sporulation of Eimeria tenella oocysts were investigated. Unsporulated E. tenella oocysts collected from cecal tissue at 7 days postinoculation were sporulated in aerated media at 28 C for 0-48 hr. Gel analysis of soluble protein extracts prepared from oocysts from their respective time points indicated the presence of 2 prominent bands with relative molecular weight (Mr) in the range of 30 kDa and making up 20% of the total protein. These 2 bands, designated as major oocyst proteins (MOPs), were absent or barely detectable by 21 hr of sporulation. MOP bands were weakly reactive with glycoprotein stain but showed no mobility shift on deglycosylation. By gel analysis it was shown that the purified MOPs consisted of 2 bands of Mr 28.7 and 30.1 kDa. However, by matrix-assisted laser deabsorption-time of flight analysis it was shown that masses were about 17% lower. Internal sequence analysis of the 28.7-kDa protein generated 2 peptides of 17 and 14 amino acids in length, consistent with a recently described protein coded by the gam56 gene and expressed in E. maxima gametocytes. Rabbit antibodies made against MOPs were localized to outer portions of sporocysts before excystment and to the apical end of in vitro-derived sporozoites. These same antibodies were found to react with bands of Mr 101 and 65 kDa by Western blot but did not recognize MOPs in soluble or insoluble sporozoite extracts. The data suggest that the MOPs are derived from part of a gametocyte protein similar to that coded by gam56 and are processed during sporulation into sporocyst and sporozoite proteins. Alternatively, the binding of anti-MOP to 101- and 65-kDa proteins may result from alternatively spliced genes as the development of parasite proceeds.  相似文献   

14.
A novel cDNA sequence with an open reading frame of 774 bp from Eimeria tenella F2 hybrid strain (ETRH01) was isolated from a lambda cDNA library with a monoclonal antibody against sporozoite. Analysis of the genomic sequence suggests that this is an intronless gene. The deduced protein sequence has 257 amino acids with a calculated molecular weight of 28.349 kDa and an isoelectric point of 8.56. Sequence analysis revealed seven transmembrane domains and a rhomboid domain within the protein. RT-PCR result indicates that this gene was expressed in all of the five E. tenella isolates analyzed. To further study the role of this novel gene in the life cycle of E. tenella, ETRH01 was successfully expressed using pET28b(+) expression system.  相似文献   

15.
cGMP-dependent protein kinase (cGK) is a major cellular receptor of cGMP and plays important roles in cGMP-dependent signal transduction pathways. To isolate the components of the cGMP/cGK signaling pathway such as substrates and regulatory proteins of cGK, we employed the yeast two-hybrid system using cGK-Ialpha as a bait and isolated a novel male germ cell-specific 42-kDa protein, GKAP42 (42-kDa cGMP-dependent protein kinase anchoring protein). Although the N-terminal region (amino acids 1-66) of cGK-Ialpha is sufficient for the association with GKAP42, GKAP42 could not interact with cGK-Ibeta, cGK-II, or cAMP-dependent protein kinase. GKAP42 mRNA is specifically expressed in testis, where it is restricted to the spermatocytes and early round spermatids. Endogenous cGK-I is co-immunoprecipitated with anti-GKAP42 antibody from mouse testis tissue, suggesting that cGK-I physiologically interacts with GKAP42. Immunocytochemical observations revealed that GKAP42 is localized to the Golgi complex and that cGK-Ialpha is co-localized to the Golgi complex when coexpressed with GKAP42. Although both cGK-Ialpha and -Ibeta, but not cAMP-dependent protein kinase, phosphorylated GKAP42 in vitro, GKAP42 was a good substrate only for cGK-Ialpha in intact cells, suggesting that the association with kinase protein is required for the phosphorylation in vivo. Finally, we demonstrated that the kinase-deficient mutant of cGK-Ialpha stably associates with GKAP42 and that binding of cGMP to cGK-Ialpha facilitates their release from GKAP42. These findings suggest that GKAP42 functions as an anchoring protein for cGK-Ialpha and that cGK-Ialpha may participate in germ cell development through phosphorylation of Golgi-associated proteins such as GKAP42.  相似文献   

16.
AMP-activated protein kinase (AMPK) is a heterotrimeric protein kinase that is crucial for cellular energy homeostasis of eukaryotic cells and organisms. Here we report on the activation of AMPK alpha1beta1gamma1 and alpha2beta2gamma1 by their upstream kinases (Ca(2+)/calmodulin-dependent protein kinase kinase-beta and LKB1-MO25alpha-STRADalpha), the deactivation by protein phosphatase 2Calpha, and on the extent of stimulation of AMPK by its allosteric activator AMP, using purified recombinant enzyme preparations. An accurate high pressure liquid chromatography-based method for AMPK activity measurements was established, which allowed for direct quantitation of the unphosphorylated and phosphorylated artificial peptide substrate, as well as the adenine nucleotides. Our results show a 1000-fold activation of AMPK by the combined effects of upstream kinase and saturating concentrations of AMP. The two AMPK isoforms exhibit similar specific activities (6 mumol/min/mg) and do not differ significantly by their responsiveness to AMP. Due to the inherent instability of ATP and ADP, it proved impossible to assay AMPK activity in the absolute absence of AMP. However, the half-maximal stimulatory effect of AMP is reached below 2 microm. AMP does not appear to augment phosphorylation by upstream kinases in the purified in vitro system, but deactivation by dephosphorylation of AMPK alpha-subunits at Thr-172 by protein phosphatase 2Calpha is attenuated by AMP. Furthermore, it is shown that neither purified NAD(+) nor NADH alters the activity of AMPK in a concentration range of 0-300 microm, respectively. Finally, evidence is provided that ZMP, a compound formed in 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-treated cells to activate AMPK in vivo, allosterically activates purified AMPK in vitro, but compared with AMP, maximal activity is not reached. These data shed new light on physiologically important aspects of AMPK regulation.  相似文献   

17.
Wang XH  Tong M  Dou D  Usha JR  Gao YS 《生理科学进展》2005,36(4):299-303
环鸟苷酸(cGMP)依赖的蛋白激酶(PKG)是一氧化氮-cGMP的主要细胞内受体,在哺乳动物细胞中分为PKG-I和PKG-II两型。在PKG介导的血管平滑肌舒张作用中,其主要通过活化细胞膜上的钙活化的钾通道(BK通道),磷酸化肌质网上的受磷蛋白(phospholamban,PLB)和三磷酸肌醇受体相关的PKG-I底物(IP3receptor-associated PKG-I substrate,IRAG),降低细胞内Ca2 浓度。PKG还可通过活化肌球蛋白轻链磷酸酶及抑制Rho激酶降低肌球蛋白对Ca2 敏感性。PKG调节血管平滑肌细胞的基因表达和表型调变,调节细胞增生。PKG活化以后还具有抑制血小板聚集,抑制心肌细胞肥大等功能。最近的研究证明,PKG的表达水平和活性改变与动脉粥样硬化和再狭窄、高血压、糖尿病心血管病变以及硝酸盐耐受等的发病机制有密切关系。  相似文献   

18.
Cardiac sarcolemmae from guinea pig ventricles were purified and incubated with cGMP-dependent protein kinase. In the presence of the purified kinase plus 10(-5) M cGMP or 8-Br-cGMP, a protein of approximately 50 kD, (Kilodalton) was phosphorylated. This membrane-associated cGMP-dependent protein kinase substrate is similar in MW to the regulatory subunit of the cAMP-dependent protein kinase, which is known to be a substrate for the cGMP-dependent protein kinase. Thus, this substrate, the identity of which remains to be proven, may be a possible mediator of cGMP-mediated control of cardiac function.  相似文献   

19.
The cDNA of the two isoforms of bovine cGMP-dependent protein kinase   总被引:9,自引:0,他引:9  
W Wernet  V Flockerzi  F Hofmann 《FEBS letters》1989,251(1-2):191-196
cDNAs encoding the isoform I alpha of the cGMP-dependent protein kinase were isolated from a bovine trachea smooth muscle cDNA library constructed in lambda gt10. The deduced protein sequence is identical with the protein sequence obtained by Edman degradation of the bovine lung enzyme [(1984) Biochemistry 23, 4207-4218]. Alternate cDNA clones were isolated which code for a protein slightly different within the aminoterminal part from the known amino acid sequence. These alternate cDNAs contain the sequence of a peptide identified in the isoform I beta of cGMP-dependent protein kinase. Northern blot analysis of poly(A)+ RNA from bovine trachea smooth muscle indicated the presence of two different mRNA species of about 6.2 kb.  相似文献   

20.
Yu P  Lasagna M  Pawlyk AC  Reinhart GD  Pettigrew DW 《Biochemistry》2007,46(43):12355-12365
Steady-state and time-resolved fluorescence anisotropy methods applied to an extrinsic fluorophore that is conjugated to non-native cysteine residues demonstrate that amino acids in an allosteric communication network within a protein subunit tune protein backbone motions at a distal site to enable allosteric binding and inhibition. The unphosphorylated form of the phosphocarrier protein IIAGlc is an allosteric inhibitor of Escherichia coli glycerol kinase, binding more than 25 A from the kinase active site. Crystal structures that showed a ligand-dependent conformational change and large temperature factors for the IIAGlc-binding site on E. coli glycerol kinase suggest that motions of the allosteric site have an important role in the inhibition. Three E. coli glycerol kinase amino acids that are located at least 15 A from the active site and the allosteric site were shown previously to be necessary for transplanting IIAGlc inhibition into the nonallosteric glycerol kinase from Haemophilus influenzae. These three amino acids are termed the coupling locus. The apparent allosteric site motions and the requirement for the distant coupling locus to transplant allosteric inhibition suggest that the coupling locus modulates the motions of the IIAGlc-binding site. To evaluate this possibility, variants of E. coli glycerol kinase and the chimeric, allosteric H. influenzae glycerol kinase were constructed with a non-native cysteine residue replacing one of the native residues in the IIAGlc-binding site. The extrinsic fluorophore Oregon Green 488 (2',7'-difluorofluorescein) was conjugated specifically to the non-native cysteine residue. Steady-state and time-resolved fluorescence anisotropy measurements show that the motions of the fluorophore reflect backbone motions of the IIAGlc-binding site and these motions are modulated by the amino acids at the coupling locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号