共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
对于基因表达芯片,特异性探针的选择是探针设计的重要环节,由于基因组序列数据量极大,不可能对每个候选探针都在全序列中进行特异性评价并进行取舍。对此问题,提出了一种采用马尔可夫链概率准则的探针特异性选择方法,即把基因组序列看作马尔可夫链,任何探针序列的互补序列作为它的一个子序列,都具有一定的出现概率,概率越小,越可能具有特异性。据此,选择其中概率最小的N个候选探针,能够大大减少进行特异性评价的探针数量,缩短探针设计的计算时间。对实际数据的测试结果表明,该方法选择的探针具有很高的特异性。 相似文献
3.
4.
炭疽芽胞杆菌基因芯片探针文库的构建 总被引:1,自引:0,他引:1
为制备炭疽芽胞杆菌的基因芯片探针文库,以炭疽芽胞杆菌毒素质粒pX01和荚膜质粒pX02为原材料,用Sau3A I酶切pX01和pX02质粒DNA,Taq DNA聚合酶72℃补平加A,经AT克隆,PCR初步鉴定筛选出炭疽质粒片段的阳性克隆.DNA自动分析仪对克隆片段进行序列测定;用生物信息学方法对其片段进行同源性分析;并将克隆的探针打印于玻片上,制备成炭疽芽胞杆茵基因芯片,与炭疽杆茵质粒DNA样品进行初步芯片杂交的实验,杂交实验的阳性率达到了90%以上,证明大部分克隆探针属于炭疽芽胞杆菌.炭疽芽胞杆菌基因芯片探针文库的构建为基因芯片探针的制备摸索出一条简便、高效、可行的方法. 相似文献
5.
6.
随着16 S rRNA序列资源的不断丰富,以及寡核苷酸微阵列基因芯片技术的不断进步,检测复杂微生物菌落中的微生物种群构成成为可能.现有的序列特异性探针设计算法缺乏足够的覆盖度、灵活性以及效率,不能满足大规模细菌检测基因芯片的设计要求.很多组特异性探针设计算法的思路多局限于针对某个目标序列组设计唯一的组特异性探针.在很多应用场合,设计单个探针检测组内所有目标序列的目标是很难达到的.因此,设计多个探针通过组合方式进行检测是很有必要的.每个探针能特异性地检测组内一部分目标序列,通过组合就能提高覆盖率.然而,在所有可能的探针组合中找到一个优化的探针组合是很耗时的.提出了一个可行的基于相对熵和遗传算法的组合探针设计算法. 相似文献
7.
建立了一种基于纳米金复合探针的基因芯片膜转印核酸检测新方法。首先,用纳米金颗粒同时标记检测探针P2和两种长短不同且生物素化的信号探针 (T10,T40),其中检测探针与靶DNA 5¢端互补,两种信号探针起信号放大作用。当靶DNA分子存在时,芯片表面捕捉探针P1 (与靶DNA分子3¢端互补) 通过碱基互补配对原则结合靶DNA分子,将其固定于芯片上,同时检测探针通过与靶DNA 5¢端互补配对将纳米金复合探针结合于芯片表面,结果在芯片表面形成“三明治”结构,后通过链霉亲和素-生物素反应,使芯片表面对应有靶DNA分子的部位结合上碱性磷酸酶,最后利用BCIP/NBT显色系统使芯片表面信号结果镜面转印至尼龙膜表面。当检测探针和信号探针摩尔比为1∶10,T10和T40摩尔比为9:1时可以检测1 pmol/L合成靶DNA分子或0.23 pmol/L结核分枝杆菌16S rDNA PCR扩增产物,检测结果通过普通的光学扫描仪读取或肉眼直接判读信号有无。本芯片检测系统灵敏度高,操作方法简单、快速,不需要特殊仪器设备,在生物分子的检测方面具有较高的应用价值。 相似文献
8.
建立制备炭疽芽胞杆菌检测基因芯片的技术,并探讨研制检测炭疽芽胞杆菌基因芯片的方法。酶切炭疽芽胞杆菌的毒素质粒和荚膜质粒,通过建立质粒DNA文库的方法获取探针,并打印在经过氨基化修饰的玻片上,制成用于炭疽芽胞杆菌检测的基因芯片。收集了290个阳性克隆探针,制备了检测炭疽芽胞杆菌的基因芯片。提取炭疽芽胞杆菌质粒DNA与基因芯片杂交,经ScanArray Lite芯片阅读仪扫描得到初步的杂交荧光图像。通过分析探针的杂交信号初步筛选出273个基因片段作为芯片下一步研究的探针。 相似文献
9.
10.
11.
DNA microarray technology, originally developed to measure the level of gene expression, has become one of the most widely used tools in genomic study. The crux of microarray design lies in how to select a unique probe that distinguishes a given genomic sequence from other sequences. Due to its significance, probe selection attracts a lot of attention. Various probe selection algorithms have been developed in recent years. Good probe selection algorithms should produce a small number of candidate probes. Efficiency is also crucial because the data involved are usually huge. Most existing algorithms are usually not sufficiently selective and quite a large number of probes are returned. We propose a new direction to tackle the problem and give an efficient algorithm based on randomization to select a small set of probes and demonstrate that such a small set of probes is sufficient to distinguish each sequence from all the other sequences. Based on the algorithm, we have developed probe selection software RandPS, which runs efficiently in practice. The software is available on our website (http://www.csc.liv.ac.uk/ approximately cindy/RandPS/RandPS.htm). We test our algorithm via experiments on different genomes (Escherichia coli, Saccharamyces cerevisiae, etc.) and our algorithm is able to output unique probes for most of the genes efficiently. The other genes can be identified by a combination of at most two probes. 相似文献
12.
13.
14.
Microarray technology is readily available to scientists interested in gene expression. Commensurate with this availability is the growing market in accessory products offering convenience but potentially variable performance. Here we evaluate seven commercial kits for probe labeling against a human apoptosis oligonucleotide array. All kits were found to label probes successfully using the manufacturers' instructions. The Stratagene Fairplay Microarray Labeling Kit was the most sensitive, with an overall call rate of 74% and the lowest rate of indeterminant calls for the HEK and HepG2 cell lines. The Invitrogen SuperScript Indirect cDNA Labeling System showed the most reproducible gene expression pattern and the least technical variation, both in terms of signal strength and between replicates on each array. The Promega Pronto! Plus System showed the least dye bias however, a higher level of variation between replicates was observed. Pairwise comparisons revealed that the Promega Pronto! Plus System and Invitrogen SuperScript Indirect cDNA Labeling System had the most similarity in their patterns of gene expression. Results obtained suggest variability in the performance of commercial kits between different manufacturers. This study supports the need to conduct comparative evaluations of commercial microarray probe labeling kits and the need for validation prior to use. 相似文献
15.
16.
地高辛标记探针检测重组人干扰素β_(1b)中DNA残留量 总被引:1,自引:0,他引:1
为检测注射用重组人干扰素β1b半成品中外源性DNA残留量,以重组人干扰素β1b工程菌基因组DNA为模板,用地高辛标记探针,并以此探针进行点杂交。结果证明,该方法检测灵敏度较好,特异性较强,操作较安全简便,可用于重组人干扰素β1b制备过程中的质量监控及半成品的检定。 相似文献
17.
Identification of Differentially-expressed Genes in Intestinal Gastric Cancer by Microarray Analysis
Shizhu Zang Ruifang Guo Rui Xing Liang Zhang Wenmei Li Min Zhao Jingyuan Fang Fulian Hu Bin Kang Yonghong Ren Yonglong Zhuang Siqi Liu Rong Wang Xianghong Li Yingyan Yu Jing Cheng Youyong Lu 《基因组蛋白质组与生物信息学报(英文版)》2014,12(6):276-283
18.
19.
Ouafae Kaissi Eric Nimpaye Tiratha Raj Singh Brigitte Vannier Azeddine Ibrahimi Abdellatif Amrani Ghacham Ahmed Moussa 《Bioinformation》2013,9(20):1019-1022
In response to the rapid development of DNA Microarray Technologies, many differentially expressed genes selection algorithms
have been developed, and different comparison studies of these algorithms have been done. However, it is not clear how these
methods compare with each other, especially when we used different developments tools. Here, we considered three commonly
used differentially expressed genes selection approaches, namely: Fold Change, T-test and SAM, using Bioinformatics Matlab
Toolbox and R/BioConductor. We used two datasets, issued from the affymetrix technology, to present results of used methods
and software''s in gene selection process. The results, in terms of sensitivity and specificity, indicate that the behavior of SAM is
better compared to Fold Change and T-test using R/BioConductor. While, no practical differences were observed between the
three gene selection methods when using Bioinformatics Matlab Toolbox. In face of our result, the ROC curve shows that: on the
one hand R/BioConductor using SAM is favored for microarray selection compared to the other methods. And, on the other hand,
results of the three studied gene selection methods using Bioinformatics Matlab Toolbox are still comparable for the two datasets
used. 相似文献