首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
RNAs that function in mitochondria, in contrast to the majority of mitochondrial proteins, are generally encoded by the mitochondrial genome. However, evidence has been presented for transport of nucleus-encoded tRNAs into mitochondria in diverse organisms. While mitochondrial protein import has been characterized in great detail, virtually nothing is known about the pathway of RNA import into mitochondria. Only very recently have in vivo systems for RNA import been established, and these are now providing some insight into this intriguing process.  相似文献   

2.
Abstract— Several isotopic precursors have been monocularly injected into chick embryos and into day-old or 15-day-old chicks. After various intervals, the incorporation of various isotopes into acid insoluble material within the retina of the injected eye and within the optic lobes, was determined. Radioactive proline and fucose were used as precursors of protein and glycoprotein respectively while uridine was used as an RNA precursor. The proportion of rapidly migrating proteins and glycoproteins was reduced during maturation. The extent of RNA migrating also appeared to decline during development. The proportion of synthesized protein that was transported was relatively constant and independent of the amino acid used. Around 30 per cent of retinally synthesized glycoprotein migrated distally and this migrating material appeared to contain very few sialic acid residues. A considerable amount of retinally synthesized gangliosides also appeared rapidly in the distal regions of the optic nerve.  相似文献   

3.
Rat liver mitochondria were fractionated on the basis of their sedimentation coefficients in the gradient of ficoll. The fractions ("heavy", "middle" and "light" mitochondria) were heterogeneous with regard to the content of protein, DNA, cytochrome a + a3 and respiratory activity. Heterogeneity of mitochondria did not result from the damage or microsomal and lysosomal contamination. The biosynthesis of DNA, RNA and proteins in the different fractions of mitochondria was studied. In vivo incorporation of radioactive precursor into RNA was highest in the fractions of "middle" mitochondria, whereas in vitro the "heavy" mitochondria showed maximum activity in the synthesis of RNA. In vitro DNA synthes was maximum in the fractions of "heavy" mitochondria, protein synthesis in "heavy" and "light" mitochondria. Activity of the synthesis of RNA, DNA and proteins in vitro depends on the content of DNA and cytochrome a + a3 in the different fractions of mitochondria. It is supposed that heterogeneity of mitochondria may be connected with their biogenesis.  相似文献   

4.
5.
6.
C. M. Bray  J. Dasgupta 《Planta》1976,132(2):103-108
Summary RNA synthesis and protein synthesis in embryonic axis tissue of viable pea (Pisum arvense L. var. N.Z. maple) seed commences during the first hour of germination. Protein synthesis in axis tissue of non-viable pea seed is barely detectable during the first 24 h after the start of imbibition. Nonviable axis tissue incorporates significant levels of [3H]uridine into RNA during this period but the level of incorporation does not increase significantly over the first 24 h of imbibition. In axis tissue of non-viable seed during the first hour of imbibition most of the [3H]uridine was incorporated into low molecular weight material migrating in advance of the 4S and 5S RNA species in polyacrylamide gels but some radioactivity was incorporated into a discrete species of RNA having a molecular weight of 2.7×106. After 24 h, non-viable axis tissue incorporates [3H]uridine into ribosomal RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and a heterogeneous RNA species of molecular weight ranging from 2.2×106 to 2.7×106. No 4S or 5S RNA synthesis is detectable after 24 h of imbibition in non-viable axis tissue. Axis tissue of viable pea seed synthesises rRNA, 4S and 5S RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and the rRNA precursor species at both periods of germination studied. Loss of viability in pea seed appears to be accompanied by the appearance of lesions in the processing of rRNA precursor species and a significant loss of RNA synthesising activity.Abbreviations rRNA ribosomal RNA - TCA trichloroacetic acid - SLS sodium lauryl sulphate - PPO 2,5 Diphenyloxazole - POPOP 1,4-Bis-2-(4-methyl-5-penyloxazolyl)-benzene  相似文献   

7.
8.
The mitochondrial genome encodes a very small fraction of the macromolecular components that are required to generate functional mitochondria. Therefore, most components are encoded within the nuclear genome and are imported into mitochondria from the cytosol. Understanding how mitochondria are assembled, function, and dysfunction in diseases requires detailed knowledge of mitochondrial import mechanisms and pathways. The import of nucleus-encoded RNAs is required for mitochondrial biogenesis and function, but unlike pre-protein import, the pathways and cellular machineries of RNA import are poorly defined, especially in mammals. Recent studies have shown that mammalian polynucleotide phosphorylase (PNPASE) localizes in the mitochondrial intermembrane space (IMS) to regulate the import of RNA. The identification of PNPASE as the first component of the RNA import pathway, along with a growing list of nucleus-encoded RNAs that are imported and newly developed assay systems for RNA import studies, suggest a unique opportunity is emerging to identify the factors and mechanisms that regulate RNA import into mammalian mitochondria. Here we summarize what is known in this fascinating area of mitochondrial biogenesis, identify areas that require further investigation, and speculate on the impact unraveling RNA import mechanisms and pathways will have for the field going forward. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.  相似文献   

9.
Jash S  Chowdhury T  Adhya S 《Mitochondrion》2012,12(2):262-270
Genetic dysfunction of mitochondria is pathological, but an effective method of nucleic acid delivery to mitochondria in vivo is lacking. Injection into rodents of tagged polycistronic RNAs (pcRNAs) encoding parts of the organelle genome and bound to a carrier complex, resulted in rapid uptake and concentration of the RNA in many tissues. The delivered RNA was localized to mitochondria. A pan-genomic cocktail of pcRNAs restored mRNA levels, stimulated mitochondrial translation and respiratory capacity of skeletal muscle of middle-aged and old rats. Thus, the carrier-based protocol may be suitable for delivery of functional RNAs to mitochondria in vivo.  相似文献   

10.
11.
12.
13.
R. Baxter  J. B. Hanson 《Planta》1968,82(3):246-260
Summary Dark-grown, 3-day-old soybean seedlings were sprayed with 1 mM 2,4-dichlorophenoxyacetic acid 24 hours before harvest. Mitochondria from 2,4-D-treated lower hypocotyls were found to be larger and showed greater incorporation in vivo, of amino acids into protein and phosphate into phospholipids and RNA, than mitochondria from untreated tissue. Mitochondria isolated from 2,4-D-treated hypocotyls showed an enhanced energy-dependent incorporation of amino acids into protein, although the incorporation of nucleoside triphosphates into the RNA of isolated mitochondria was not affected. No effect of 2,4-D, applied in vitro, was noted, and no enhancement of mitochondrial respiratory efficiency followed auxin treatment. A method of isolating mitochondria with a very low level of bacterial contamination is reported.  相似文献   

14.
Messenger activity of ribonucleic acid form yeast mitochondria.   总被引:1,自引:1,他引:0       下载免费PDF全文
Total yeast mitochondrial RNA was shown to possess messenger RNA activity when injected into oocytes of the frog Xenopus laevis. The specific polypeptides formed were precipitated by mitochondrial antisera. A comparison was made of the molecular weights of the proteins obtained form this system with those made by mitochondria in vivo in the presence of cycloheximide. No RNA containing poly(A) sequences was detected in yeast mitochondria.  相似文献   

15.
In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNALys CUU into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNALys CUU and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria. The tRNA import efficiency increased upon addition of the glycolytic enzyme enolase, previously found to be an actor of the yeast RNA import machinery. Finally, the role of preKARS2 in the RNA mitochondrial import has been directly demonstrated in vivo, in cultured human cells transfected with the yeast tRNA and artificial importable RNA molecules, in combination with preKARS2 overexpression or downregulation by RNA interference. These findings suggest that the requirement of protein factors for the RNA mitochondrial targeting might be a conserved feature of the RNA import pathway in different organisms.  相似文献   

16.
Multiple-respiratory-chain deficiency represents an important cause of mitochondrial disorders. Hitherto, however, mutations in genes involved in mtDNA maintenance and translation machinery only account for a fraction of cases. Exome sequencing in two siblings, born to consanguineous parents, with severe encephalomyopathy, choreoathetotic movements, and combined respiratory-chain defects allowed us to identify a homozygous PNPT1 missense mutation (c.1160A>G) that encodes the mitochondrial polynucleotide phosphorylase (PNPase). Blue-native polyacrylamide gel electrophoresis showed that no PNPase complex could be detected in subject fibroblasts, confirming that the substitution encoded by c.1160A>G disrupts the trimerization of the protein. PNPase is predominantly localized in the mitochondrial intermembrane space and is implicated in RNA targeting to human mitochondria. Mammalian mitochondria import several small noncoding nuclear RNAs (5S rRNA, MRP RNA, some tRNAs, and miRNAs). By RNA hybridization experiments, we observed a significant decrease in 5S rRNA and MRP-related RNA import into mitochondria in fibroblasts of affected subject 1. Moreover, we found a reproducible decrease in the rate of mitochondrial translation in her fibroblasts. Finally, overexpression of the wild-type PNPT1 cDNA in fibroblasts of subject 1 induced an increase in 5S rRNA import in mitochondria and rescued the mitochondrial-translation deficiency. In conclusion, we report here abnormal RNA import into mitochondria as a cause of respiratory-chain deficiency.  相似文献   

17.
In vivo and in vitro (tissue slices) incorporation of labeled precursors into DNA, RNA, and proteins was measured in mitochondria obtained from cerebral hemispheres, cerebellum, and brain stem of rats at different days of postnatal development. To compare the synthesis of macromolecules in mitochondria with that in other subcellular fractions, the incorporation of labeled precursors into DNA, RNA, and proteins extracted from nuclei and into RNA and proteins extracted from microsomes and cytoplasmic soluble fractions was also measured.The results obtained showed that the incorporation of [3H]thymidine into DNA and of [14C]leucine into proteins of nuclei and mitochondria from the various brain regions examined decreased during postnatal development, however, at 30 days of age the specific radioactivity of mitochondrial DNA was higher than that of nuclear DNA. [3H]Uridine incorporation into RNA decreased from 10 to 30 days of age in nuclei while in mitochondria it was quite similar at both ages. This result may be due to a faster turnover of mitochondrial RNA compared to that of mitochondrial DNA and proteins. The results obtained suggest an active biosynthesis of macromolecules in brain mitochondria and might indicate an intense biogenesis of these organelles in rat brain during postnatal development.Preliminary reports of these results were presented at the XI FEBS Meeting, Copenhagen, August 14–19, 1977, Poster number A2-2-155-3, and at III Meeting of Italian Biochem. Soc., Siena, October 3–5, 1977, Abstract C6.  相似文献   

18.
The effect of undernutrition on the incorporation of [methyl-3H]thymidine into DNA and of 5-[3H]uridine into RNA of cerebral hemispheres, cerebellum, and brain stem was studied in vivo and in vitro in rats. The labeling of DNA from nuclei and mitochondria and of RNA from nuclei, mitochondria, microsomes, and soluble fractions, was also measured in vitro. The results demonstrate that nucleic acid synthesis is impaired and delayed during undernutrition. Specific effects were observed for the different brain regions and subcellular fractions: at 10 days nuclear and mitochondrial DNA and RNA synthesis was impaired, whereas at 30 days only the mitochondrial nucleic acid synthesis was affected.The delay of DNA and RNA labeling, caused by undernutrition, was most evident in the cerebellum, probably due to its intense cell proliferation during postnatal development. The specific sensitivity of mitochondria as compared to other subcellular fractions, may be due to the intense biogenesis and/or turnover of nucleic acids in brain mitochondria not only during postnatal development, but also in the adult animal.  相似文献   

19.
Transfection of mammalian mitochondria has proved to be notoriously difficult. Whilst there have been sporadic reports of import of foreign nucleic acids into isolated organelles, these imported nucleic acids have never been demonstrated to be functional. Inability to manipulate mitochondrial gene expression has hampered our understanding of RNA processing, maturation and translation in mitochondria. In an attempt to establish a model system for mt-RNA expression, we have electroporated rat liver mitochondria and mitoplasts in the presence of various RNA constructs built around the mitochondrial reporter gene mt-luciferase. Following electroporation, a fraction of the RNA was shown to be stably maintained, mitochondria remained coupled for oxidative phosphorylation and intramitochondrial protein synthesis was unaffected. In no case, however, was this RNA translated.  相似文献   

20.
Import of small RNAs into Leishmania mitochondria in vitro.   总被引:4,自引:0,他引:4       下载免费PDF全文
S Mahapatra  T Ghosh    S Adhya 《Nucleic acids research》1994,22(16):3381-3386
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号