共查询到20条相似文献,搜索用时 15 毫秒
1.
Motilin, a 22-amino acid peptide hormone secreted by endocrine cells of the intestinal mucosa, plays an important role in the regulation of gastrointestinal motility. The actions of motilin agonists have been extensively investigated in dogs due to physiological similarities between the dog and human alimentary tracts. The amino acid sequence of the dog motilin receptor, however, was previously unknown. We have cloned a cDNA from dog stomach corresponding to the motilin receptor. The deduced protein shared 71% and 72% sequence identity with the human and rabbit motilin receptors, respectively. Expression of the dog motilin receptor in CHO cells promoted the typical cellular responses to the agonists, motilin and erythromycin. The rank order of potency determined for these agonists was similar to that found for the human motilin receptor, with motilin being more potent than erythromycin. Immunohistochemistry of the dog stomach revealed that the motilin receptor was localized in neuronal cell bodies and fibers. This is the first study detailing the cloning, expression, and functional characterization of the dog motilin receptor. Determination of the full sequence and functional properties of the dog motilin receptor will provide useful information enabling us to interpret previous and future studies of motilin agonists in dogs. 相似文献
2.
A new glucocorticoid-binding protein (Peak C) eluted with 0.14 M NaCl on DEAE-cellulose chromatography was identified previously in the rats subjected to stress or treated with glucocorticoid (100 micrograms/100 g body wt.), while the 'classic' glucocorticoid receptor (Peak B) eluted with 0.07 M NaCl was found predominantly in untreated rats. The new glucocorticoid-binding protein, Peak C, was characterized by Scatchard analysis and competition with other steroids as a glucocorticoid receptor. The saturation curve of Peak C for dexamethasone was sigmoidal, whereas that of Peak B was hyperbolic. The Hill coefficient was 1.0 for Peak B and 3.1 for Peak C. These results show that Peak C has multiple binding sites. Peak C bound specifically to only natural or synthetic glucocorticoids, whereas Peak B bound not only to glucocorticoids but also to progesterone and aldosterone. Peak C was far more labile than Peak B, its binding activity decreasing 80% when it was incubated for 30 min at 25 degrees C. The molecular sizes of these two peaks (B and C) were similar, being about 90 000-100 000 as determined by Sepharose 6B column chromatography at high ionic strength (0.34 M KCl). The hormone-receptor complex of Peak C bound to rat liver chromatin specifically, but did not bind to calf thymus DNA. The complex of Peak B bound to not only the chromatin but also calf thymus DNA. Peak B reacted well with antiserum to the 'classic' glucocorticoid receptor, but Peak C did not react with this antiserum. These results indicate that Peak C is a different glucocorticoid receptor protein from Peak B, or classic glucocorticoid receptor, and plays physiologically important roles as a glucocorticoid receptor mediating the action of the hormone at a high level. 相似文献
3.
Kenji Hirota Takako Hirota Yoshikazu Sanno Takehiko Tanaka 《Biochimica et Biophysica Acta (BBA)/General Subjects》1985,843(3)
A new glucocorticoid-binding protein (Peak C) eluted with 0.14 M NaCl on DEAE-cellulose chromatography was identified previously in the rats subjected to stress or treated with glucocorticoid (100 μg/100 g body wt.), while the ‘classic’ glucocorticoid receptor (Peak B) eluted with 0.07 M NaCl was found predominantly in untreated rats. The new glucocorticoid-binding protein, Peak C, was characterized by Scatchard analysis and competition with other steroids as a glucocorticoid receptor. The saturation curve of Peak C for dexamethasone was sigmoidal, whereas that of Peak B was hyperbolic. The Hill coefficient was 1.0 for Peak B and 3.1 for Peak C. These results show that Peak C has multiple binding sites. Peak C bound specificially to only natural or synthetic glucocorticoids, whereas Peak B bound not only to glucocorticoids but also to progesterone and aldosterone. Peak C was far more labile than Peak B, its binding activity decreasing 80% when it was incubated for 30 min at 25°C. The molecular sizes of these two peaks (B and C) were similar, being about 90 000–100 000 as determined by Sepharose 6B column chromatography at high ionic strength (0.35 M KCl). The hormone-receptor complex of Peak C bound to rat liver chromatin specifically, but did not bind to calf thymus DNA. The complex of Peak B bound to not only the chromatin but also calf thymus DNA. Peak B reacted well with antiserum to the ‘classic’ glucocorticoid receptor, but Peak C did not react with this antiserum. These results indicate that Peak C is a different glucocorticoid receptor protein from Peak B, or classic glucocorticoid receptor, and plays physiologically important roles as a glucocorticoid receptor mediating the action of the hormone at a high level. 相似文献
4.
Kevin A. Hutchinson Gordana Mati Michael J. Czar William B. Pratt 《The Journal of steroid biochemistry and molecular biology》1992,41(3-8):715-718
In this work we have probed the mechanism responsible for two non-DNA-binding states of the mouse glucocorticoid receptor. In the first case, transformed receptors were treated with hydrogen peroxide. It is known that oxidizing agents promote the formation of disulfide bonds in the glucocorticoid receptor, but it has not been determined what domains are involved in any disulfide bond formation that leads to inactivation of DNA-binding activity. We show here that hydrogen peroxide inhibits DNA-binding by the 15-kDa tryptic fragment containing the DNA-binding fingers with the same concentration dependency as it inhibits DNA-binding by the uncleaved receptor. This suggests that all of the effect of peroxide is on sulfhydryl groups within the zinc fingers. After dissociation (transformation) of cytosolic heteromeric glucocorticoid receptor complexes, only a portion (40–60%) of the dissociated receptors can bind to DNA-cellulose. We show that the 15-kDA tryptic fragment derived from the portion of transformed receptors that do not bind to DNA is itself competent at DNA-binding. 相似文献
5.
6.
R Tarrab J Rodríguez C Huitrón R Palacios G Soberón 《European journal of biochemistry》1974,49(2):457-468
7.
Chien C. Loa Ming K. Hsieh Ching C. Wu Tsang L. Lin 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2001,130(4)
The cDNAs of turkey and chicken interferon gamma (IFN-γ) were cloned and the functional activity of turkey and chicken IFN-γ was compared. The coding region of turkey IFN-γ gene encodes a predicted mature protein of 145 amino acids with a molecular weight at 16.8 kDa. Compared with type I IFN, the IFN-γ between turkey and chicken also had the same size and high degree of identity at the nucleotide (96.0%) and amino acid (96.4%) sequence. Turkey IFN-γ was cross-reactive with chicken cells. Both turkey and chicken IFN-γ could induce production of nitric oxide by turkey or chicken macrophages. Turkey IFN-γ also had similar degree of sensitivity to heat and pH 2.0 as chicken IFN-γ. The functional activity of both turkey and chicken IFN-γ could be neutralized by a monoclonal antibody specific to chicken IFN-γ to a similar extent. These results indicated that IFN-γ protein was cross-reactive between turkey and chicken. 相似文献
8.
9.
10.
11.
R Legerski X Zhou J Dresback H Eberspaecher S McKinney P Segarini B de Crombrugghe 《Biochemical and biophysical research communications》1992,183(2):672-679
We report the isolation of a full-length rat cDNA for a new activin receptor. The deduced amino acid sequence of this receptor shows 67 percent overall identity with that of a previously identified mouse activin receptor. As predicted for the mouse activin receptor, the amino acid sequence of the rat receptor is consistent with a polypeptide containing an extracellular ligand binding domain, a hydrophobic transmembrane domain, and a serine/threonine kinase intracellular domain. In an expression assay, this new receptor was found to bind I125 radiolabeled activin. 相似文献
12.
A soluble, thermolabile protein with characteristics typical of glucocorticoid receptors has been identified in the ovaries of estrogenstimulated hypophysectomized immature rats. After the incubation of 3H-dexamethasone with ovarian cytosol, fractionation on a Sephadex G-200 column reveals a peak of radioactivity which elutes at the void volume. This peak, which represents saturable 3H-dexamethasone binding, disappears following heating (4 ° C × 15 min) or treatment of the cytosol with pronase. Scatchard analysis of the 3H-dexamethasone binding to cytosol shows it to be high affinity (Kd=5.1 nM) and saturable, with 327 fmol binding sites/mg cytosol protein. Binding site number rises linearly with increasing cytosol protein concentrations. The relative abilities of various steroids to inhibit 3H-dexamethasone binding are: triamcinolone acetonide ≥ dexamethasone > cortisol = progesterone > dihydrotestosterone > estradiol. This binding protein sediments at 9 S on a sucrose gradient, has a mean Stokes radius of 105 Å on gel exclusion chromatography, and has a calculated molecular weight of 388, 000 daltons and a frictional ratio of 2.1. 3H-Dexamethasone is not metabolized and does not bind specifically to serum. We have identified a protein in the rat ovary with characteristics of a glucocorticoid receptor and propose that this protein may be responsible for mediating direct effects of glucocorticoids on the ovary. 相似文献
13.
14.
Manjapra Variath Govindan 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,631(2):327-333
The rat liver nuclear glucocorticoid receptor has a molecular weight of 90 000. Using antibody bound to the stationary matrix, the cytosol and nuclear glucocorticoid receptors from rat liver were purified. The translocation of glucocorticoid receptor from rat liver cytosol into the nucleus was studied using immunoaffinity chromatography. Immediately after the intraperitoneal injection of rats with the hormone, the receptor translocation started and was complete within 10 min. The 90 000 dalton nuclear receptor component is identical to the 90 000 dalton cytosol component. They have identical molecular weights in the same gel electrophoresis system and produce identical peptide fragments after digestion with Staphyolococcal aureus V8 protease. The receptor component enriched by immunoaffinity chromatography from cytosol of adrenalectomised rats contained mainly a 45 000 dalton component. 相似文献
15.
Molecular identification and functional characterization of the kisspeptin/kisspeptin receptor system in lower vertebrates 总被引:2,自引:0,他引:2
The KISS1 gene encodes the kisspeptin neuropeptide, which activates the KISS1 receptor (KISS1R; G protein-coupled receptor 54; GPR54) and participates in neuroendocrine regulation of GnRH secretion. To study the physiological function(s) and evolutionary conservation of KISS1, we cloned opossum, Xenopus, and zebrafish kiss1 cDNAs. Processing zebrafish, Xenopus, or opossum KISS proteins would liberate a carboxy-terminal amidated peptide with 52, 54, or 53 amino acid residues, respectively. Phylogenetic analysis of all known vertebrate KISS1 peptides showed clear clustering of the sequences according to canonical vertebrate classes. The zebrafish kiss1 gene consists of two exons and one intron. Real-time PCR analysis of two kiss1R cloned from zebrafish brain found expression of kiss1, kiss1ra, and kiss1rb, with kiss1ra-more similar to other piscine Kiss1 receptors-highly expressed in the gonads and kiss1rb in other nonbrain tissues. In females kiss1 mRNA levels gradually increased during the first few weeks of life to peak in fish with ovaries containing mature oocytes, while in males kiss1 mRNA levels peaked after 6 wk postfertilization when the testes exhibited initial stages of spermatogenesis and decreased after puberty. Zebrafish kiss1ra and kiss1rb were expressed differentially with similar patterns in both genders. These results indicate that the Kiss1/Kiss1r system may participate in puberty initiation in fish as well. Like human KISS1R, Kiss1ra transduces its activity via the PKC pathway, whereas Kiss1rb does so via both PKC and PKA pathways. The human KISS1R was highly activated by both huKISS10amide and zfKISS10amide, whereas both zebrafish Kiss1 receptor types were less sensitive to amidation. 相似文献
16.
17.
Molecular identification of the first SIFamide receptor 总被引:1,自引:0,他引:1
Jørgensen LM Hauser F Cazzamali G Williamson M Grimmelikhuijzen CJ 《Biochemical and biophysical research communications》2006,340(2):696-701
SIFamide is the short name and also the C terminus of the Drosophila neuropeptide AYRKPPFNGSIFamide. SIFamide has been isolated or predicted from various insects and crustaceans, and appears to be extremely well conserved among these arthropods. However, the function of this neuropeptide is still enigmatic. Here, we have identified the Drosophila gene (CG10823) coding for the SIFamide receptor. When expressed in Chinese hamster ovary cells, the receptor is only activated by Drosophila SIFamide (EC(50), 2x10(-8)M) and not by a library of 32 other insect neuropeptides and eight biogenic amines. Database searches revealed SIFamide receptor orthologues in the genomes from the malaria mosquito Anopheles gambiae, the silkworm Bombyx mori, the red flour beetle Tribolium castaneum, and the honey bee Apis mellifera. An alignment of the five insect SIFamide or SIFamide-like receptors showed, again, an impressive sequence conservation (67-77% amino acid sequence identities between the seven-transmembrane areas; 82-87% sequence similarities). The identification of well-conserved SIFamide receptor orthologues in all other insects with a sequenced genome, suggests that the SIFamide/receptor couple must have an essential function in arthropods. This paper is the first report on the identification of a SIFamide receptor. 相似文献
18.
19.
It was recently shown that the covalent tethering of the N-terminus of parathyroid hormone (PTH) to the seventh helical bundle of the G-protein coupled PTH-receptor (PTH1R) leads to autoactivation [Shimizu et al., J. Biol. Chem. 275 (2000) 19456-19460]. Here, we have developed molecular models for the interaction of PTH(1-11) tethered to PTH1R and refined them with molecular dynamics simulations. The starting structure of the ligand/receptor complex is based on experimental data from a series of spectroscopic structural studies of PTH(1-34) and the extracellular domains of PTH1R and intermolecular contact points derived from photoaffinity labeling. The resulting PTH1R/[Arg(11)]PTH(1-11) complex has the N-terminus of PTH interacting with residues of the third extracellular loop of PTH1R, as a possible mode for receptor activation. The hydrophobic residues leucine-5 and methionine-8, centrally located in the N-terminal alpha-helix of PTH(1-11), are located in deep, well-defined hydrophobic pockets in the central core of the seventh helical bundle, consistent with the requirement of these amino acids for autoactivation. We postulate that the improved signaling properties of [Arg(11)]PTH(1-11) over wild type PTH(1-11) is due to a stable hydrogen bond between Arg(11) and E444, at the beginning of TM7. The model provides atomic insight into currently available biochemical data as well as numerous putative ligand/receptor interactions, and thereby may further the rational design of reduced-size PTH agonists at the PTH1 receptor. 相似文献
20.
Deborah Begh�� Alessandro Ferrarini Tommaso Ganino Andrea Fabbri 《Tree Genetics & Genomes》2011,7(6):1185-1198
There is an urgent need for a rapid and accurate procedure to evaluate the degree of genetic diversity in Olea europaea L. In this research work, we used simple sequence repeat markers for the characterization and identification of the genetic profiles of a group of ancient olive trees, using clustering analysis (dendrogram analysis, Bayesian method) to estimate the genetic distance and relationships among individuals and “random forests” to evaluate the importance of the applied markers and create the differential profiles. As a result, by the use of ten microsatellite loci, we were able to separate 142 samples into homogeneous groups. Our results indicate a high genetic diversity within the group of local accessions. Most accessions seem to have a foreign origin, particularly from neighbouring zones, but a discrete number of them appear to be of unknown origin. We have expressed the differential genetic profiles of the identified groups in terms of “if-then-else” rules. This paper, after a comparison with classical methods, proposes a rigorous methodological approach to the purpose of characterizing olive trees. It also introduces for the olive the concept of differential genetic profiles as complementary to classic ones. 相似文献