首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have previously reported the isolation and partial sequence analysis of a rice mitochondrial DNA fragment (6.9 kb) which contains a transferred copy of a chloroplast gene cluster coding for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL), and subunits of ATPase (atpB and atpE), methionine tRNA (trnM) and valine tRNA (trnV). We have now completely sequenced this 6.9 kb fragment and found it to also contain a sequence homologous to the chloroplast gene coding for the ribosomal protein L2 (rpl2), beginning at a site 430 bp downstream from the termination codon of rbcL. In the chloroplast genome, two copies of rpl2 are located at distances of 20 kb and 40 kb, respectively, from rbcL. We have sequenced these two copies of rice chloroplast rpl2 and found their sequences to be identical. In addition, a 151 bp sequence located upstream of the chloroplast rpl2 coding region is also found in the 3 noncoding region of chloroplast rbcL and other as yet undefined locations in the rice chloroplast genome. Hybridization analysis revealed that this 151 bp repeat sequence identified in rice is also present in several copies in 11 other plant species we have examined. Findings from these studies suggest that the translocation of rpl2 to the rbcL gene cluster found in the rice mitochondrial genome might have occurred through homologous recombination between the 151 bp repeat sequence present in both rpl2 and rbcL.  相似文献   

2.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

3.
The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2‐kb unit contains four genes. One allele of Rhg1, Rhg1‐b, is responsible for protecting most US soybean production from SCN. Whole‐genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2‐kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high‐density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non‐neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1.  相似文献   

4.
Overlapping clones of the structural gene region for alpha-amylase,Amy, were isolated from a lambda EMBL4 library containing genomic DNA fragments from an amylase-null strain ofDrosophila melanogaster. Southern blot analysis and restriction endonuclease mapping of the cloned region indicate that it contains anAmy gene duplication within an inverted repeat sequence as is characteristic of the genomic arrangement for this species. Spacing between the cloned gene copies is similar to that commonly found in other strains. Evidence is presented for the presence of an inversion 4 to 9 kb in length within the clonedAmy region of the null strain. We postulate a causal relationship between the presence of the inversion and the failure of individuals from the null strain to express amylase. A model is proposed that suggests the inversion may have arisen through intramolecular (or sister-strand) recombination mediated by homologous pairing of the inverted repeat sequences at theAmy locus.This research was supported by NIH Grant GM25255.  相似文献   

5.
6.
Summary A restriction endonuclease cleavage site map for the enzymes ClaI and BglII, and a partial map for SacI, has been constructed for the chloroplast genome of the moss Physcomitrella patens (Hedw.) BSG. The plastid chromosome contains approximately 122 kb organized into small (21 kb) and large (82 kb) single-copy regions separated by two copies of a repeat sequence (9.4 kb) oriented in an inverted arrangement. Genes for 17 proteins and 2 ribosomal RNAs have been mapped using heterologous probes from corn, spinach, pea, and petunia. The general order and arrangement of the moss chloroplast genes are similar to the consensus land plant genome typified by that of spinach, with two major exceptions. First, there is an inversion of approximately 20 kb, bordered internally by psbA and atpH, and also containing the genes atpF and atpA. Second, rpl2 and rps19 have been relocated to a different position within the large single-copy region, adjacent to the 20 kb inversion.  相似文献   

7.
Deletions within E. coli plasmids carrying yeast rDNA.   总被引:4,自引:0,他引:4  
A Cohen  D Ram 《Gene》1978,3(2):135-147
Deletions occur in recombinant DNA plasmids that contain yeast ribosomal DNA (rDNA) inserted into the E. coli plasmids pSC101 and pMB9. Deletions within a pMB9 plasmid containing an insert longer than one tandem rDNA repeat apparently are due to homologous recombination because (1) all of the independently derived deletion products of this plasmid lost one complete rDNA repeat (8.6 kb) and retained only a single copy of the segment repeated at the ends of the original insert and (2) deletions were detected only when the insert had terminal redundancy. Deletions also occur within a pSC101 plasmid containing a tandem duplication of a segment (4.7 kb) including both pSC101 DNA and rDNA. Once again these deletions appear to be due to the presence of a duplicated region because all deletion products have lost one complete repeat. Deletions within both of these plasmids took place in both rec+ and recA- host cells, but occurred more frequently in rec+ cells. Oligomerization of the deletion products also occurred in both hosts and was more frequent in rec+ cells.  相似文献   

8.
The mouse genomic locus containing the oncogene c-mos was analyzed for repetitive DNA sequences. We found a single B1 repeat 10 kb upstream and three B1 repeats 0.6 kb, 2.7 kb, and 5.4 kb, respectively, downstream from c-mos. The B1 repeat closest to c-mos contains an internal 7-bp duplication and a 18-bp insertion. Localized between the last two B1 repeats is a copy of a novel mouse repeat. Sequence comparison of three copies of this novel repeat family shows that they a) contain a conserved BglII site, b) are approximately 420 bp long, c) possess internal 50-bp polypurine tracts, and d) have structural characteristics of transposable elements. They are present in about 1500 copies per haploid genome in the mouse, but are not detectable in DNA of other mammals. The BglII repeat downstream from c-mos is interrupted by a single 632-bp LTR element. We estimate that approximately 1200 copies of this element are present per haploid genome in BALB/c mice. It shares sequence homology in the R-U5 region with an LTR element found in 129/J mice.  相似文献   

9.
Within a 7 kb segment of the mtDNA molecule of the root knot nematode, Meloidogyne javanica, that lacks standard mitochondrial genes, are three sets of strictly tandemly arranged, direct repeat sequences: approximately 36 copies of a 102 ntp sequence that contains a TaqI site; 11 copies of a 63 ntp sequence, and 5 copies of an 8 ntp sequence. The 7 kb repeat-containing segment is bounded by putative tRNAasp and tRNAf-met genes and the arrangement of sequences within this segment is: the tRNAasp gene; a unique 1,528 ntp segment that contains two highly stable hairpin-forming sequences; the 102 ntp repeat set; the 8 ntp repeat set; a unique 1,068 ntp segment; the 63 ntp repeat set; and the tRNAf-met gene. The nucleotide sequences of the 102 ntp copies and the 63 ntp copies have been conserved among the species examined. Data from Southern hybridization experiments indicate that 102 ntp and 63 ntp repeats occur in the mtDNAs of three, two and two races of M.incognita, M.hapla and M.arenaria, respectively. Nucleotide sequences of the M.incognita Race-3 102 ntp repeat were found to be either identical or highly similar to those of the M.javanica 102 ntp repeat. Differences in migration distance and number of 102 ntp repeat-containing bands seen in Southern hybridization autoradiographs of restriction-digested mtDNAs of M.javanica and the different host races of M.incognita, M.hapla and M.arenaria are sufficient to distinguish the different host races of each species.  相似文献   

10.
The first series of studies on the rDNA satellite of the sea urchin, Lytechinus variegatus, based on saturation hybridization of rRNA-rDNA and renaturation kinetics, showed that repeat length of rRNA gene was of about 8 kb in which there was no provision for NTS. The EM denaturation mapping, however, revealed (1) that the gene was 75% larger (longer) than 8 kb, within which there was a NTS whose length varied in repeating units, (3) and there was a region of high GC almost in the middle of the transcribed part. The suggestion of length and sequential heterogeneity in the gene copies coming from the first denaturation mapping prompted further studies with techniques so that the conclusions of the previous results could be stated with finality. The results that emanated from further studies established that the rDNA repeat length of L. variegatuswas of about 12 kb and that the NTS ranged from 3.8 to 6.4 kb. Earlier demonstration of a moderately high-GC segment within the transcribed part was also confirmed by sequence analysis. However, the stipulations on the NTS regarding sequential and length heterogeneity, still awaits elucidation by sequence analysis.  相似文献   

11.
We report the cloning, sequencing and analysis of the major repetitive DNA of soybean (Glycine max). The repeat, SB92, was cloned as several monomers and trimers produced by digestion with XhoI. The deduced consensus sequence of the repeat is 92 base pairs long. Genomic sequences do not fluctuate in length. Their average homology to the consensus sequence is 92%. The consensus of SB92 contains slightly degenerated homologies for several 6-cutters. Therefore, many of them generate a ladder of 92-bp oligomers. The distribution of bands seems to be random, but the occurrence of sites for different 6-cutters varies widely. There is no obvious correlation between the sequences of the neighboring units of SB92 in cloned trimers. Also, there are none of the internal repetitive blocks reported for many satellite DNAs from other species. The SB92 repeat makes up 0.7% of total soybean DNA. This is equivalent to 8×104 copies, or 7 megabases. The repeat is organized in giant tandem blocks over 1 Mb in length, and there are fewer blocks than chromosomes. The polymorphism of these blocks is extremely high. The SB92 repeat is present in identical arrangement and number of copies in the ancestral subspecies Glycine soja. There are 10 times fewer copies of the repeat in a related species Vigna unguiculata (cowpea), and no homologies in several other more distant leguminous plants studied.  相似文献   

12.
We constructed a complete physical map and a partial gene map of the chloroplast genome of Cyclotella meneghiniana Kützing clone 1020-1a (Bacillariophyceae). The 128-kb circular molecule contains a 17-kb inverted repeat, which divides the genome into single copy regions of65 kb and 29 kb. This is the largest genome and inverted repeat found in any diatom examined to date. In addition to the 16S and 23S ribosomal RNA genes, the inverted repeat contains both the ndhD gene (as yet unexamined in other diatoms) and the psbA gene (located similarly in one of two other examined diatoms). The Cyclotella chloroplast genome exists as two equimolar populations of inversion isomers that differ in the relative orientation of their single copy sequences. This inversion heterogeneity presumably results from intramolecular recombination within the inverted repeat. For the first time, we map the ndhD, psaC, rpofi, rpoCl, and rpoC2 genes to the chloroplast genome of a chlorophyll c-containing alga. While the Cyclotella chloroplast genome retains some prokaryotic and land plant gene clusters and operons, it contains a highly rearranged gene order in the large and small single copy regions compared to all other examined diatom, algal, and land plant chloroplast genomes.  相似文献   

13.
In the large spacer of the rDNA of Vicia faba, multiples of a 0.32 kilobasepair (kb) sequence reiterate to various degrees. We sequenced the repetitious region consisting of the repeating sequences and its flanking regions using two cloned plasmids, which contain V. faba rDNA segments encompassing the whole region of the large spacer. The repetitious region was found to consist of multiple complete copies and one truncated copy of a 325 bp repeat unit and to be flanked by direct repeat sequences of about 150 bp. The set of direct repeats located at either side of the repetitious region differed from each other with about 10% sequence heterogeneity. However, nucleotide sequences of the direct repeats were well conserved between the two clones examined. Southern blot hybridization indicated a widespread distribution within the whole V. faba genome of some related sequences with high homologies to the 325 bp repeat unit and to the direct repeats.  相似文献   

14.
R27, an IncHI1 plasmid of 182 kilobases (kb), which was originally isolated fromSalmonella typhimurium, was found to contain two copies of IS1 in direct orientation. Deletion derivatives constructed in vitro were of two types: a maxi-derivative of 110 kb (pDT1047) with a single complete copy of IS1, and mini-derivatives of 5–6 kb which contained less than a complete copy of IS1. The IncHI1 miniplasmids also contained a portion of the tetracycline resistance determinant from R27 and a replication region related to the RepFIA replicon. Electron microscopic homoduplex studies demonstrated the presence of two other inverted repeat sequences within the miniplasmid that were unrelated to IS1.  相似文献   

15.
We constructed complete physical maps of the tripartite mitochondrial genomes of two Crucifers, Brassica nigra (black mustard) and Raphanus sativa (radish). Both genomes contain two copies of a direct repeat engaged in intragenomic recombination. The outcome of this recombination in black mustard is to interconvert a 231 kb master chromosome with two subgenomic circles of 135 kb and 96 kb. In radish, a 242 kb master chromosome interconverts with subgenomic circles of 139 kb and 103 kb. The recombination repeats are 7 kb in size in black mustard and 10 kb in radish, and are nearly identical except for two insertions in the radish repeat relative to the black mustard one. The two repeat configurations present on the master chromosome of black mustard are located on the subgenomes of radish and vice-versa. To explain this, we postulate the existence of an evolutionarily intermediate mitochondrial genome in which the recombination repeats were (are) present in an inverted orientation. The recombination repeats described for these two species are completely different from those previously found in the closely related species B. campestris, implying that such repeats are created and lost frequently in plant mitochondrial DNAs and making it less than likely that recombination occurs in a site-specific manner.  相似文献   

16.
We have determined the full sequence of the ribosomal DNA intergenic spacer (IGS) of the swimming crab, Charybdis japonica, by long PCR for the first time in crustacean decapods. The IGS is 5376 bp long and contains two nonrepetitive regions separated by one long repetitive region, which is composed mainly of four subrepeats (subrepeats I, II, III, and IV). Subrepeat I contains nine copies of a 60-bp repeat unit, in which two similar repeat types (60 bp-a and 60 bp-b) occur alternatively. Subrepeat II consists of nine successive repeat units with a consensus sequence length of 142 bp. Subrepeat III consists of seven copies of another 60-bp repeat unit (60 bp-c) whose sequence is complementary to that of subrepeat I. Immediately downstream of subrepeat III is subrepeat IV, consisting of three copies of a 391-bp repeat unit. Based on comparative analysis among the subrepeats and repeat units, a possible evolutionary process responsible for the formation of the repetitive region is inferred, which involves the duplication of a 60-bp subrepeat unit (60 bp-c) as a prototype. Received: 13 April 1999 / Accepted: 2 August 1999  相似文献   

17.
The amplifiable AUD1 element of Streptomyces lividans 66 consists of two copies of a 4.7 kb sequence flanked by three copies of a 1 kb sequence. The DNA sequences of the three 1 kb repeats were determined. Two copies (left and middle repeats) were identical: (1009 by in length) and the right repeat was 1012 bp long and differed at 63 positions. The repeats code for open reading frames (ORFs) with typical Streptomyces codon usage, which would encode proteins of about 36 kD molecular weight. The sequences of these ORFs suggest that they specify DNA-binding proteins and potential palindromic binding sites are found adjacent to the genes. The putative amplification protein encoded by the right repeat was expressed in Escherichia coli.  相似文献   

18.
Summary Strain PP808 of Pseudomonas syringae pv. phaseolicola contains pEXC8080 (34.6 kb), the smallest of several plasmids that originated by partial excision of the cryptic plasmid, pMMC7105 (150 kb), from the host chromosome. This excision plasmid is derived entirely of sequences from pMMC7105 and contains a 24 kb region referred to as common DNA, which is present in each of the other excision plasmids. A six enzyme restriction endonuclease map was constructed of pEXC8080. The replication region was mapped by identifying small restriction fragments that conferred replication properties to pMB1 plasmids that otherwise fail to replicate in Pseudomonas. This region is located within the common DNA and is 0.8–3.8 kb in size. Sequences from pEXC8080 failed to stabilize pMB1 derivatives in Pseudomonas in the absence of antibiotic selection, but stability functions were mapped to a region of pMMC7105 that presumably remains integrated in the chromosome of strain PP808. An incompatibility region was mapped to a 7.3 kb region on pEXC8080 that is closely linked to, but not included within, the replication region. The recombination site was mapped to a 1.2 kb region of the fusion fragment that was formed upon excision of pEXC8080. RS-I, a repetitive sequence, found on pMMC7105 was present in the fusion fragment at the site of recombination. RS-I was also mapped to BamHI fragments that recombined upon excision of pEXC8080 and suggest that it provides sites for homologous recombination.  相似文献   

19.
Summary We have examined transgene inheritance in over 300 progeny of a line of soybean (Glycine max) transformed by particle bombardment with a construct containing bovine β-casein under the control of the soybean lectin 5′ and 3′ regulatory elements. Four copies of the casein transgene, located at a single locus, exhibit a high frequency of recombination that resulted in novel patterns in approximately 16% of the progeny in both the T1 and T2 generations. Characterization of the transgene locus using restriction enzymes that do not cut the transformation plasmid showed that all four transgene copies are at a single locus no larger than approximately 40 kb in size. Therefore, the recombination events resulting in the loss of transgene DNA are taking place within a limited physical distance on the host chromosome. This is the first report extensively documenting transgene instability at the DNA level in a plant transformed via particle bombardment. As this report indicates, a seemingly simple phenotype (presence of the foreign protein) may conceal inherent genetic instability at the DNA level.  相似文献   

20.
The nucleotide (nt) sequence of the 5508-nt intergenic spacer (IGS), between the 25S- and the 18S-coding regions of Cucurbita maxima rDNA, was determined. The fragment sequenced is 6142 nt long and includes 472 nt of 25S- and 162 nt of 18S-coding regions. The IGS has a complex primary structure, composed of five repetitive families (A-E) and three unique domains. It is dominated by the presence of nine, tandemly-repeating units of approximately 250 nt (repeat D), each unit containing four copies of an internal subrepeat (repeat E). The repetitive units show sequence variability consisting of nt changes, insertions and deletions. Upstream of the nine D repeats and between two copies of the B repeat is a 575-nt region, highly G + C rich (83%) and heavily biased toward C (58%) in the sense strand. Within this region are six repetitive units, averaging 42 nt (repeat C) each, containing but a single A nt. Downstream from the terminus of the 25S-coding sequence, are two tandem copies of the 103-nt A repeat. The IGS of C. maxima is longer and more complex than that of other plant IGSs described to date. The 600 nt at the 5' portion of cucurbit IGS is more conserved in evolution than the remainder, as revealed by comparison of C. maxima and C. pepo IGS restriction maps and by nucleotide sequence comparison of C. maxima and Cucumis sativa IGSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号