首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Singing muscles of the katydid, Neoconocephalus robustus (Insecta, Tettigoniidae) are neurogenic, yet perform at contraction-relaxation frequencies as high as 212 Hz (Josephson and Halverson, '71). The mechanical and electrical responses of different bands of one of these muscles (the dorsal longitudinal muscle, DLM) has been examined with respect to ultrastructural features of each part which may be related to muscle performance. The DLM is composed of three bands and is innervated by four motoneurones. The cell bodies of three of these motoneurones occur ipsilaterally in the prothroracic ganglion; the cell body of the other motoneurone is contralateral in the mesothoracic ganglion. Three of the motoneurones (as yet unidentified fast axons) initiate extraordinarily fast twitches (rise time equal 7.3 msec, half duration equals 14.3 msec, 25 C), the fourth (an unidentified slower axon) evokes twitches which are considerably slower (rise time equals 18.9 msec, half duration equals 5.10 msec). Whereas the ventral and medial bands of the muscle are innervated only by fast axons (some fibers of the medial band are doubly innervated), the dorsal band is innervated by both a fast axon and the slower axon. A few fibers of the dorsal band are doubly innervated. The structure of fibers from the ventral and medial bands is very similar, with short sarcomeres (4.0 and 4.3 mum, respectively) and thin strap-like myofibrils delineated by well-developed sarcoplasmic reticulum (SR). Twenty-four percent of the volume of ventral band fibers is SR and the diffusion distance from SR to the center of the adjacent myofibril averages 0.083 mum. Twenty percent of the medial band fiber volume is SR, with a diffusion distance of 0.118 mum. Ventral and medial band fibers contain about 40% mitochondria, and 33% myofibrils. The dorsal band fibers have longer sarcomeres (9.5 mum), and only 10% of the fiber volume is SR. The muscle fibrils of the dorsal band are larger and consequently the diffusion distance is greater (0.227 mum) than in the ventral and medial bands. Mitochondria comprise 23% of the volume of dorsal band fibers. Most dorsal band mitochondria are aggregated into distinct clumps. Although some dorsal band fibers are innervated by a fast axon and some by the slower axon, the dorsal band fibers are structurally homogeneous, suggesting that neurotrophic effects are not important in maintaining the structure of dorsal band fibers. The mechanical-electrical performance and ultrastructure of the ventral and medial bands suggest their roll as fast, metabolically active but weak muscles, used in singing; the dorsal band as a slower but stronger muscle, perhaps involved in postural movements of the wing during singing.  相似文献   

2.
A functional analysis of the striated swim-bladder muscles engaged in the sound production of the toadfish has been performed by simultaneous recording of muscle action potentials, mechanical effects, and sound. Experiments with electrical nerve stimulation were made on excised bladder, while decerebrate preparations were used for studies of reflex activation of bladders in situ. The muscle twitch in response to a single maximal nerve volley was found to be very fast. The average contraction time was 5 msec. with a range from 3 to 8 msec., the relaxation being somewhat slower. The analysis of muscle action potentials with surface electrodes showed that the activity of the muscle fibers running transversely to the long axis of the muscle was well synchronized both during artificial and reflex activation. With inserted metal microelectrodes monophasic potentials of 0.4 msec. rise time and 1.2 to 1.5 msec. total duration were recorded. The interval between peak of action potential and onset of contraction was only 0.5 msec. Microphonic recordings of the characteristic sound effect accompanying each contraction showed a high amplitude diphasic deflection during the early part of the contraction. During relaxation a similar but smaller deflection of opposite phase could sometimes be distinguished above the noise level. The output from the microphone was interpreted as a higher order derivative function of the muscle displacement. This interpretation was supported by complementary experiments on muscle sound in mammalian muscle. The dependence of the sound effects on the rate of muscle contraction was demonstrated by changing the temperature of the preparation and, in addition, by a special series of experiments with repeated stimulation at short intervals. Results obtained by varying the pressure within the bladder provided further evidence for the view that the sound initiated in the muscle is reinforced by bladder resonance. Analysis of spontaneous grunts confirmed the finding of a predominant sound frequency of about 100 per second, which was also found in reflexly evoked grunts. During these, muscle action potentials of the same rate as the dominant sound frequency were recorded, the activity being synchronous in the muscles on both sides. Some factors possibly contributing to rapid contraction are discussed.  相似文献   

3.
The (Ca2+ or Mg2+)-activated ectophosphohydrolase of intact frog muscle liberates, in situ, about 37 mumol inorganic phosphate/g muscle in 20 min at 20 degrees C with 10 mM ATP. Pretreatment with concanavalin A (ConA) at 4 degrees C for 18 h caused ectoenzyme inactivation which plateaued at 35-40% of the control rate. The inhibition was concentration dependent, being maximal at about 500 micrograms ConA/mL Ringer's solution. The lectin mediated its effect via the membrane glycoproteins since the inhibition was specifically prevented by alpha-methyl D-mannopyranoside. As the temperature increased from 10 to 40 degrees C, the ectoenzyme activity of untreated muscles increased linearly between 10 and 35 degrees C, with a "break point" and a clear change in slope at 35 degrees C. When treated with ConA the activity increased linearly from 10 to 40 degrees C, eliminating the transition temperature. The findings suggested that a phase transition toward fluidity in the lipid bilayer may have occurred at 35 degrees C and that this was abolished by the lectin binding. Hence we perturbed the surface membrane phospholipids of muscle pretreated with the lectin. Phospholipase C increased the activation by the lectin; phospholipase D had no effect, but phospholipase A2 completely prevented it. The lectin may require the more fluid fatty acyl chains of membrane lipids to achieve inhibition of this ecto-ATPase. Ectoacetylcholinesterase, in situ, and its inactivation by ConA were measured directly on whole, intact skeletal muscles.  相似文献   

4.
We studied the antidromic and synaptic potentials evoked from 32 digastric-muscle motoneurons by stimulation of the motor nerve to this muscle, different branches of the trigeminal nerve, and the mesencephalic trigeminal nucleus. Antidromic potentials appeared after 1.1 msec and lasted about 2.0 msec. Stimulation of the infraorbital, lingual, and inferior alveolar nerves led to development of excitatory postsynaptic potentials (EPSP) and action potentials in the motoneurons. The antidromically and synaptically evoked action potentials of the digastric-nerve motoneurons were characterized by weak after-effects. We were able to record EPSP and action potentials in two of the motoneurons investigated in response to stimulation of the mesencephalic trigeminal nucleus, the latent period being 1.3 msec. This indicates the existence of a polysynaptic connection between the mesencephalic-nucleus neurons and the digastric-muscle motoneurons. Eight digastric-muscle motoneurons exhibited inhibitory postsynaptic potentials (IPSP), which were evoked by activation of the afferent fibers of the antagonistic muscle (m. masseter). The data obtained indicate the presence of reciprocal relationships between the motoneurons of the antagonistic muscles that participate in the act of mastication.A. A. Bogomol'ts Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 52–57, January–February, 1971.  相似文献   

5.
It is known that the properties of the excitation-contraction coupling of crayfish skeletal muscle are different in some respects from those of frog muscle. In the present study, activation of contraction of the crayfish muscle induced by short depolarizing pulses was investigated and it was compared with the results of frog muscle obtained by Adrian, Chandler and Hodgkin (1969). Two glass microelectrodes were inserted into the thoracal muscle of the crayfish. The muscle was stimulated by the voltage-clamped pulses of different durations and the resulting contractions were observed under the binocular microscope with the magnification of 60 X at 20 approximately 23 degrees C. The rheobasic membrane potential was -55mV. The mechanical threshold potential was -42 mV for 10 msec, -15 mV for 2.5 msec, +18 mV for 1 msec and around +90 mV for 0.5 msec pulses. For short pulses where the threshold potential was more positive than -20 mV, the area of the depolarization above -30 mV was 51 mV-msec. Subthreshold pulses produced contraction if applied repetitively. The effect of a just suprathreshold short pulse on the activation of contraction was cancelled by the hyperpolarizing pulse.  相似文献   

6.
To find out whether the decrease in muscle performance of isolated mammalian skeletal muscle associated with the increase in temperature toward physiological levels is related to the increase in muscle superoxide (O(2)(*-)) production, O(2)(*-) released extracellularly by intact isolated rat and mouse extensor digitorum longus (EDL) muscles was measured at 22, 32, and 37 degrees C in Krebs-Ringer solution, and tetanic force was measured in both preparations at 22 and 37 degrees C under the same conditions. The rate of O(2)(*-) production increased marginally when the temperature was increased from 22 to 32 degrees C, but increased fivefold when the temperature was increased from 22 to 37 degrees C in both rat and mouse preparations. This increase was accompanied by a marked decrease in tetanic force after 30 min incubation at 37 degrees C in both rat and mouse EDL muscles. Tetanic force remained largely depressed after return to 22 degrees C for up to 120 min. The specific maximum Ca(2+)-activated force measured in mechanically skinned fibers after the temperature treatment was markedly depressed in mouse fibers but was not significantly depressed in rat muscle fibers. The resting membrane and intracellular action potentials were, however, significantly affected by the temperature treatment in the rat fibers. The effects of the temperature treatment on tetanic force, maximum Ca(2+)-activated force, and membrane potential were largely prevented by 1 mM Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a membrane-permeable superoxide dismutase mimetic, indicating that the increased O(2)(*-) production at physiological temperatures is largely responsible for the observed depression in tetanic force at 37 degrees C by affecting the contractile apparatus and plasma membrane.  相似文献   

7.
Two cell types can be distinguished with intracellular recording from the pars intercerebralis of the American cockroach (Periplaneta americana). The first type, which corresponds morphologically to the medial neurosecretory cell, always had spontaneously occurring, overshooting action potentials. These action potentials are probably endogenously produced. Tetrodotoxin experiments revealed that sodium is the dominant ion of the action potential. The action potentials are followed by a relatively long after-hyperpolarization. The input resistance of these cells ranged from 120 to 390 M omega. A mathematical model, based on cellular morphology and response to current pulses, revealed a membrane time constant of about 100 msec and an axonal:somatic conductance ratio of approximately 13. Area-specific membrane resistance was estimated at 33 k omega cm2. These cells also often had reversible and spontaneous inhibitory postsynaptic potentials. The second cell type, which is non-neurosecretory, never produced spontaneous action potentials and rarely had synaptic potentials. Action potentials could be evoked by current injection into the cell body or by extracellular stimulation of their axons in the posteroventral portion of the the protocerebrum. These action potentials also depend on sodium ions. Their input resistance ranged from 16 to 35 M omega. They had a membrane time constant of approximately 15 msec and an axonal:somatic conductance ratio of about 9. Their area specific membrane resistance was estimated at 14 k omega cm2.  相似文献   

8.
The kinetics of acetylcholine (ACh) receptor channels on cultured myotomal muscle cells from Xenopus embryos were studied by analyzing focally recorded membrane currents. The mean open time for receptor channels on embryonic muscle cells grown in dissociated cell cultures showed a time-dependent decrease similar to that seen in vivo. The changes in power density spectra are consistent with the hypothesis that the decrease results from the appearance of a class of ACh receptor with a short mean channel open time (0.7 msec) and a decrease in the proportion of receptors with a long mean channel open time (3 msec). The addition of dissociated neural tube cells to muscle cell cultures resulted in an unexpected increase in mean channel open time for ACh receptors in both synaptic and nonsynaptic regions. These studies demonstrate that ACh receptor function may be altered in cultured muscle cells.  相似文献   

9.
1. Spontaneous and evoked synaptic activity were recorded from the muscles of squid fin and mantle. These spontaneous synaptic potentials were large (up to 30 mV) and pleomorphic. Their amplitudes were not normally distributed, nor did they appear to be clustered in integral multiples of some "unit" event size. 2. Electrical stimulation of the nerve resulted in muscle twitches when the bath calcium concentration was a third normal or higher. The frequency of spontaneous synaptic events was unaffected by low calcium. 3. The large size of spontaneous events may mean that the synchronized release of only a few such "quanta" are sufficient to cause muscle action potentials and contraction. 4. The shapes of spontaneous events correlated poorly with their amplitudes, which is consistent with release from multiple synaptic sites with distinct properties.  相似文献   

10.
Electromyograms of mammalian extraocular muscles were recorded by means of a coaxial electrode. Besides normal extracellular spike potentials (1-2 msec duration), monophasic waves (with a decline lasting up to 7 msec) were recorded. As to the interpretation of these potential changes in terms of a potential drop that is produced by local currents flowing from the resting region of a fibre towards the active region consideration is given to two cases. First, a propagated active region (spike potentials, at least diphasic) and second, a stationary active region (with resulting monophasic waves). In the EMGs spontaneous monophasic potentials recruit at a lower threshold than spike potentials; frequency changes were observed when head position was altered. The latter are interpreted as local depolarizations occurring at neuromuscular junctions of multiple innervated muscle fibres among those fibre types that compose extraocular muscles.  相似文献   

11.
Extensive neurophysiological investigations were carried out in 18 healthy volunteer subjects, and 6 patients with neurological disease. The tests consisted of spinal and scalp somatosensory evoked potentials (SEPs) to stimulation of the dorsal nerve of penis/clitoris, motor evoked potentials (MEPs) from the bulbocavernosus muscle (BC) and anal sphincter (AS) in response to scalp and sacral root stimulation, and measurement of sacral reflex latency (SRL) from BC and AS.In the control subjects, the mean sensory total conduction time (sensory TCT), as measured at the peak of the scalp P40 wave was 40.9 msec (range: 37.8–44.2). The mean sensory central conduction time (sensory CCT = spine-to-scalp conduction time) was 27.0 msec (range: 23.5–30.4).Transcranial brain stimulation was performed by using a magnetic stimulator both at rest and during voluntary contraction of the examined muscle. Sacral root stimulation was performed at rest. Motor total conduction times (motor TCT) to BC and AS muscles were respectively 28.8 and 30.0 msec at rest, and 22.5 and 22.8 msec during contraction. Motor central conduction times (motor CCT) to sacral cord segments controlling BC and AS muscles were respectively 22.4 and 21.2 msec at rest, and 15.1 and 12.4 msec during contraction.The mean latencies of SRL were respectively 31.4 msec in the bulbocavernosus muscle and 35.9 msec in the anal sphincter. Combined or isolated abnormalities of SEPs, MEPs and SRL were found in a small group of patients with neurological disorders primarily or secondarily affecting the genito-urinary tract.  相似文献   

12.
The membrane potentials of single smooth muscle fibers of various regions of the stomach were measured, and do not differ from those measured in intestinal muscle. Spontaneous slow waves with superimposed spikes could be recorded from the longitudinal and circular muscle of the antrum. The development of tension was preceded by spikes but often tension appeared only when the slow waves were generated. Contracture in high K solution developed at a critical membrane potential of -42 mv. MnCl2 blocked the spike generation, then lowered the amplitude of the slow wave. On the other hand, withdrawal of Na+, or addition of atropine and tetrodotoxin inhibited the generation of most of the slow waves but a spike could still be elicited by electrical stimulation. Prostigmine enhanced and prolonged the slow wave; acetylcholine depolarized the membrane without change in the frequency of the slow waves. Chronaxie for the spike generation in the longitudinal muscle of the antrum was 30 msec and conduction velocity was 1.2 cm/sec. The time constant of the foot of the propagated spike was 28 msec. The space constants measured from the longitudinal and circular muscles of the antrum were 1.1 mm and 1.4 mm, respectively.  相似文献   

13.
Activities of potassium and sodium ions in rabbit heart muscle   总被引:3,自引:3,他引:0       下载免费PDF全文
Activities (a) of intracellular K and Na in rabbit ventricular papillary muslces were determined with cation-selectivve glass microelectrodes and concentrations (C) were estimated with flame photometry. The CK and aK of the muscles were 134.9 +/- 3.1 mM (mean value +/- SE) and 82.6 mM, respectively, at 25 degrees C. The corresponding CNa and aNa were 32.7 +/- 2.7 and 5.7, respectively. The apparent intracellular activity coefficients for K (gammaK) and Na (gammaNa) were 0.612 and 0.175, respectively. Similar results were obtained at 35 +/- 1 degree C. gammaK was substantially lower than the activity coefficient (0.745) of extracellular fluid (Tyrode's solution), which might be expected on the basis of a different intracellular ionic strength. gammaNa was much lower than that of extracellular fluid, and suggest that much of the Na was compartmentalized or sequestered. For external K concentrations greater than 5 mM, the resting membrane potentials agreed well with the potential differences calculated from the K activity gradients across the cell membrane as a potassium electrode. These results emphasize that potassium equilibrium potentials in heart muscle should be calculated by activities rather than concentrations.  相似文献   

14.
The properties of glutamate-activated excitatory currents on the gm6 muscle from the foregut of the spiny lobsters Panulirus argus and interruptus and the crab Cancer borealis were examined using either noise analysis, analysis of synaptic current decays, or slow iontophoretic currents. The properties of acetylcholine currents activated in nonjunctional regions of the gm6 muscle were also examined. At 12 degrees C and -80 mV, the predominant time constant of power spectra from glutamate-activated current noise was approximately 7 ms and the elementary conductance was approximately 34 pS. At 12 degrees C and -80 mV, the predominant time constant of acetylcholine- activated channels was approximately 11 ms with a conductance of approximately 12 pS. Focally recorded glutamatergic extracellular synaptic currents on the gm6 muscle decayed with time constants of approximately 7-8 ms at 12 degrees C and -80 mV. The decay time constant was prolonged e-fold about every 225-mV hyperpolarization in membrane potential. The Q10 of the time constant of the synaptic current decay was approximately 2.6. The voltage dependence of the steady-state conductance increase activated by iontophoretic application of glutamate has the opposite direction of the steady-state conductance activated by cholinergic agonists when compared on the gm6 muscles. The glutamate-activated conductance increase is diminished with hyperpolarization. The properties of the marine crustacean glutamate channels are discussed in relation to glutamate channels in other organisms and to the acetylcholine channels found on the gm6 muscle and the gm1 muscle of the decapod foregut (Lingle and Auerbach, 1983).  相似文献   

15.
Static muscle contraction increases ATP release into the muscle interstitial space. Elevated ATP in muscle stimulates thin fiber muscle afferents and increases blood pressure via engagement of purinergic P2X receptors. In addition, ATP activates P2X receptors and enhances cardiovascular responses induced by stimulation of muscle mechanoreceptors. In this study, we examined whether elevated muscle temperature would attenuate and whether reduced temperature would potentiate P2X effects on reflex muscle responses. alpha,beta-Methylene ATP (alpha,beta-MeATP) was injected into the arterial blood supply of hindlimb muscle to stimulate P2X receptors, and muscle stretch was induced to activate mechanically sensitive muscle afferents as alpha,beta-MeATP was injected in 10 anesthetized cats. Femoral arterial injection of alpha,beta-MeATP (1.0 mM) increased mean arterial pressure (MAP) by 35+/-5 (35 degrees C), 26+/-3 (37 degrees C), and 19+/-3 mmHg (39 degrees C; P<0.05 vs. 35 degrees C), respectively. Muscle stretch (2 kg) elevated MAP. The MAP response was significantly enhanced 34% and 36% when alpha,beta-MeATP (0.2 mM) was arterially infused 5 min before muscle stretch at 35 degrees and 37 degrees C, respectively. However, as muscle temperature reached 39 degrees C, the stretch-evoked response was augmented only 6% by alpha,beta-MeATP injection, and the response was significantly attenuated compared with the response with muscle temperature of 35 degrees and 37 degrees C. In addition, we also examined effects of muscle temperature on alpha,beta-MeATP enhancement of the cardiovascular responses to static muscle contraction while the muscles were freely perfused and the circulation to the muscles was occluded. Because muscle temperature was 37 degrees C, arterial injections of alpha,beta-MeATP significantly augmented contraction-evoked MAP response by 49% (freely perfused) and 53% (ischemic condition), respectively. It is noted that this effect was significantly attenuated at a muscle temperature of 39 degrees C. These data indicate that the effect of P2X receptor on reflex muscle response is sensitive to alternations of muscle temperature and that elevated temperature attenuates the response.  相似文献   

16.
Membrane Characteristics of the Canine Papillary Muscle Fiber   总被引:3,自引:2,他引:1  
Passive and active responses to intracellular and extracellular stimulation were studied in the canine papillary muscle. The electrotonic potential produced by extracellular polarization with the partition chamber method fitted the time course and the spatial decay expected from the cable theory (the time constant, 3.3 msec; the space constant, 1.2 mm). Contrariwise, spatial decay of the electrotonic potentials produced by intracellular polarization was very short and did not fit the decay curve expected for a simple cable, although only a small difference of time course in the electrotonic potentials produced by intracellular and extracellular polarizations was observed. A similar time course might result from the fact that when current flow results from intracellular polarization, the input resistance is less dependent on the membrane resistance. The foot of the propagated action potential rose exponentially with a time constant of 1.1 msec and a conduction velocity of 0.68 m/sec. The membrane capacity was calculated from the time constant of the foot potential and the conduction velocity to be 0.76 µF/cm2. The responses of the papillary muscle membrane to intracellular stimulation differed from those to extracellular stimulation applied with the partition method in the following ways: higher threshold potential, shorter latency for the active response, linearity of the current-voltage relationship, and no reduction in the membrane resistance at the crest of the action potential during current flow.  相似文献   

17.
We recorded the motor evoked potentials (MEPs) from the abductor pollicis brevis muscle, after supramaximal electrical transcranial stimulation, and studied the effect of paired transcranial shocks with varying interstimulus time intervals, in 10 normal subjects, 4 patients with median nerve neuropathy and 2 patients with motoneurone disease.In relaxed muscles the amplitude of the MEP evoked by a single shock averaged 30% of the M wave. With intervals from 1 to 2.5 msec 2 shocks evoked one MEP far larger in size than the control MEP (70% of the M wave). With intervals of 10 msec and longer, the 2 shocks evoked 2 independent MEPs; the size of the MEP following the second shock (test) was inversely correlated with the size of the control MEP: the more the control MEP approached the size of the M wave, the smaller the test MEP. Single motor unit records showed that, in the normal subjects and patients with peripheral neuropathy, the same motor unit was activated either by the first or the second shock, whereas in the patients with motoneurone disease it fired twice. In active muscles, the control MEP averaged 70% of the M wave. With intervals of 10 msec and longer the test MEP was markedly suppressed; with 100 msec intervals it fully recovered. In relaxed muscles, by delivering a double shock at a 1.5 msec interval, thus evoking a large MEP, followed by a second double-shock, the test MEP was completely suppressed for a period of 20 msec; it began to recover at 50 msec intervals and fully recovered after 150 msec.These results indicate that: (1) high-threshold spinal motoneurones can profit from temporal summation if double-shocks are delivered at short time intervals; (2) the synchronous excitation of the motoneuronal pool produced by transcranial stimulation is followed by a 20 msec period of absolute inhibition, possibly through a massive activation of the Renshaw system; (3) during voluntary contraction, only a portion of the motoneuronal pool remains refractory, possibly because of the enhanced spinal excitability.  相似文献   

18.
The slow-twitch soleus muscle (SOL) exhibits decreased twitch tension (cold depression) in response to a decreased temperature, whereas the fast-twitch extensor digitorum longus (EDL) muscle shows enhanced twitch tension (cold potentiation). On the other hand, the slow-twitch SOL muscle is more sensitive to twitch potentiation and contractures evoked by caffeine than the fast-twitch EDL muscle. In order to reveal the effects of these counteracting conditions (temperature and caffeine), we have studied the combined effects of temperature changes on the potentiation effects of caffeine in modulating muscle contractions and contractures in both muscles. Isolated muscles, bathed in a Tyrode solution containing 0.1-60 mM caffeine, were stimulated directly and isometric single twitches, fused tetanic contractions and contractures were recorded at 35 degrees C and 20 degrees C. Our results showed that twitches and tetani of both SOL and EDL were potentiated and prolonged in the presence of 0.3-10 mM caffeine. Despite the cold depression, the extent of potentiation of the twitch tension by caffeine in the SOL muscle at 20 degrees C was by 10-15 % higher than that at 35 degrees C, while no significant difference was noted in the EDL muscle between both temperatures. Since the increase of twitch tension was significantly higher than potentiation of tetani in both muscles, the twitch-tetanus ratio was enhanced. Higher concentrations of caffeine induced contractures in both muscles; the contracture threshold was, however, lower in the SOL than in the EDL muscle at both temperatures. Furthermore, the maximal tension was achieved at lower caffeine concentrations in the SOL muscle at both 35 degrees C and 20 degrees C compared to the EDL muscle. These effects of caffeine were rapidly and completely reversed in both muscles when the test solution was replaced by the Tyrode solution. The results have indicated that the potentiation effect of caffeine is both time- and temperature-dependent process that is more pronounced in the slow-twitch SOL than in the fast-twitch EDL muscles.  相似文献   

19.
The properties of acetylcholine-activated excitatory currents on the gm1 muscle of three marine decapod crustaceans, the spiny lobsters Panulirus argus and interruptus, and the crab Cancer borealis, were examined using either noise analysis, analysis of synaptic current decays, or analysis of the voltage dependence of ionophoretically activated cholinergic conductance increases. The apparent mean channel open time (tau n) obtained from noise analysis at -80 mV and 12 degrees C was approximately 13 ms; tau n was prolonged e-fold for about every 100-mV hyperpolarization in membrane potential; tau n was prolonged e- fold for every 10 degrees C decrease in temperature. Gamma, the single- channel conductance, at 12 degrees C was approximately 18 pS and was not affected by voltage; gamma was increased approximately 2.5-fold for every 10 degrees C increase in temperature. Synaptic currents decayed with a single exponential time course, and at -80 mV and 12 degrees C, the time constant of decay of synaptic currents, tau ejc, was approximately 14-15 ms and was prolonged e-fold about every 140-mV hyperpolarization; tau ejc was prolonged about e-fold for every 10 degrees C decrease in temperature. The voltage dependence of the amplitude of steady-state cholinergic currents suggests that the total conductance increase produced by cholinergic agonists is increased with hyperpolarization. Compared with glutamate channels found on similar decapod muscles (see the following article), the acetylcholine channels stay open longer, conduct ions more slowly, and are more sensitive to changes in the membrane potential.  相似文献   

20.
In 15 normal subjects the latency of electrically elicited long-latency reflexes (LLRs) of thenar muscles was compared with somatosensory evoked potentials (SEPs) after median nerve stimulation and with the latencies of thenar muscle potentials after transcranial stimulation (TCS) of the motor cortex. Assuming a transcortical reflex pathway the intracortical relay time for the LLR was calculated to be 10.4±1.9 msec (mean±S.D.) or 8.1 ± 1.6 msec depending on the experimental conditions. The duration of the cortical relay time is not correlated with the peripheral or central conduction times, with body size or arm length. If the LLRs of hand muscles are conducted transcortically the long duration of the cortical relay time suggests a polysynaptic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号