首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Brunner's glands of the duodenum are innervated by cholinergic and VIP-ergic nerves, and the glands have been shown to contain epidermal growth factor (EGF). In this study the effect of VIP and acetylcholine (Ach) on secretion of EGF from Brunner's glands was investigated in the rat. Intravenous infusion of VIP stimulated the flow rate of duodenal secretion, an effect which was inhibited by atropine. Ach alone did not significantly increase flow rate, and combined infusion of VIP and Ach induced the same flow as VIP alone. Concentration of EGF in duodenal secretion was increased by infusion of Ach, and this effect was potentiated by VIP. Infusion of VIP alone did not influence EGF concentration. EGF output from Brunner's glands was significantly stimulated by i.v. infusion of VIP and of Ach and combined infusion further increased EGF output. The study has demonstrated exocrine secretion of EGF from Brunner's glands, and it is suggested that stimulation is mediated by interaction of neuronal VIP and Ach.  相似文献   

3.
Routine histological and indirect immunofluorescence techniques were used to examine the histological details of changes in the distribution of epidermal growth factor (EGF) in the submandibular salivary glands of mice during secretion. Comparisons were made bewteen glands of normal mice and those of mice given one of a number of secretagogues at various times prior to sampling. Normal submandibular salivary glands in male mice had an extensive system of convoluted granular tubules (CGT), the cells of which contained EGF. When adrenaline of alpha-phenylephrine was administered, the CGT cells degranulated, and there was a concomitant loss of intracellular EGF-positive immunofluorescence. The excretory ducts were engorged with immunofluorescent material, indicating secretion of EGF into saliva, while the ductal cells themselves remained EGF-negative. The degranulation response could be blocked by phentolamine, but not by propranolol, and no changes in EGF distribution followed the administration of pilocarpine. It was concluded that EGF is secreted, at least partly into the saliva, following an alpha-adrenergic response, and that this occurs with degranulation of the cells of the CGT.  相似文献   

4.
7S nerve growth factor (7S NGF) and nerve growth factor I (NGFI) are NGF-containing protein complexes isolated from mouse submandibular glands by different protocols, and reports suggest that the molecules differ chemically. In this study, we compared the molecular properties and subunit compositions of the two proteins. Purified 7S NGF and NGFI electrophoresed to identical positions on polyacrylamide gels in nondissociating buffers, with electrophoretic mobilities indistinguishable from that of unpurified NGF in salivary gland extracts. Ultraviolet absorption curves were identical, and sedimentation coefficients were similar (7.3 +/- 0.25 S for 7S NGF; 7.2 +/- 0.2 S for NGFI) as determined by sedimentation velocity analysis. By sedimentation equilibrium analysis, molecular weights of 135 000-140 000 were obtained for both complexes at protein concentrations in the centrifuge cell greater than 85 micrograms/mL; when protein concentrations within the centrifuge cell ranged from approximately 30 to 100 micrograms/mL at equilibrium, both complexes dissociated. Molecular weight values determined by gel filtration on Bio-Gel P300 and Sephadex G200 resins were similar for both proteins, and the values determined on Sephadex agreed with those obtained by ultracentrifugation. The subunit compositions of the complexes were also similar as determined by nonequilibrium isoelectric focusing, NGFI being composed of proteins that migrated to positions identical with those of the alpha, beta, and gamma subunits of 7S NGF. Furthermore, the stoichiometry of the subunits was similar in the two complexes as determined by radioimmunoassays to each of the subunits and by densitometric analysis of electrophoretic gels. Both methods showed that the complexes contain approximately 2 mol of the alpha and gamma subunits per mole of beta-NGF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Background information. TSPO (translocator protein), previously known as PBR (peripheral‐type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High‐affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium‐dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. Results. Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam‐binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, 3H‐labelled PK 11195, as shown by Bmax and Kd values of 10.0±0.5 pmol/mg and 4.0±1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and α‐adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K+, Na+, Cl and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. Conclusions. High‐affinity ligand binding to mitochondrial TSPO modulates neurotransmitter‐induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

6.
Urinary epidermal growth factor (EGF) has been demonstrated recently to originate from the kidneys. The present study was undertaken to investigate the adrenergic and cholinergic influence on secretion of renal EGF. beta-Adrenergic agonists increased the level of urinary EGF, while propranolol, a beta-adrenergic blocking agent, decreased basal and beta-adrenergic stimulated total output of urinary EGF. Acetylcholine and the anticholinergic agent atropine had no effect on the output of EGF in urine. Also chemical sympathectomy induced by 6-hydroxydopamine reduced the urinary output of EGF. None of the experimental groups had a median serum concentration above the detection limit of the assay. The present study shows that secretion of renal EGF is under the influence of the sympathetic nervous system and release of EGF is stimulated by activation of beta-adrenergic receptors in the kidneys.  相似文献   

7.
Although growth factor signaling is required for embryonic development of organs, individual signaling mechanisms regulating these organotypic processes are just beginning to be defined. We compared signaling activated in fetal mouse submandibular glands (SMGs) by three growth factors, epidermal growth factor (EGF), fibroblast growth factor (FGF) 7, or FGF10, and correlated it with specific events of branching morphogenesis. Immunoblotting showed that EGF strongly stimulated phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and weakly stimulated phosphorylation of phospholipase C γ 1 (PLC γ 1) and phosphatidylinositol-3 kinase (PI3K) in cultured E14 SMG. However, FGF7 and FGF10 stimulated phosphorylation of both PLC γ 1 and PI3K, but elicited only minimal phosphorylation of ERK-1/2. Morphological study of mesenchyme-free SMG epithelium cultured in Matrigel revealed that EGF induced cleft formation of endpieces, that FGF7 stimulated both cleft formation and stalk elongation, but that FGF10 induced only stalk elongation. In mesenchyme-free SMG epithelium cultured with EGF, FGF7 and FGF10, U0126 (MEK inhibitor) completely blocked cleft formation, whereas U73122 (PLC γ 1 inhibitor) suppressed stalk elongation. These finding suggest that EGF stimulates cleft formation and drives branch formation via ERK-1/2, and that FGF7 stimulates both cleft formation and stalk elongation via PLC γ 1 and partly via ERK-1/2, but that FGF10 stimulates stalk elongation mainly via PLC γ 1.  相似文献   

8.
The cellular and subcellular localization of epidermal growth factor in the submandibular glands of male and female adult mice was established by immunoperoxidase techniques. In light microscopic preparations epidermal growth factor was found exclusively in the granular convoluted tubules of the gland. The intensity of staining for epidermal growth factor varied from cell to cell, and some cells apparently were negative. The pattern of staining was similar in the glands of male and female mice; however, the granular convoluted tubules are androgen-responsive, and thus more extensive and composed of larger cells in males. In thin sections epidermal growth factor was most heavily concentrated in the secretion granules of the granular convoluted tubule cells. Within a given cell there was variation in intensity of staining of individual secretion granules, with some granules appearing minimally reactive or negative. The only other cell component with deposits of reaction product was the ribosomes.  相似文献   

9.
The granular convoluted tubule (GCT) cells of the submandibular glands represent a major production site for epidermal growth factor (EGF). This study investigates EGF production in the submandibular glands in relation to beta-adrenergic stimulation. Rats were treated with isoproterenol (beta-agonist), which caused up to a 400% increase in submandibular tissue weight after 3 weeks. The weight increase coincided with marked morphologic changes, with degranulation and an apparent decrement in the number of the GCT cells. Immunostaining against EGF revealed a reduction in the number of EGF-immunoreactive cells. Concomitantly, the glandular contents of 6-kDa EGF decreased from 12.86+/-3.42 nmol/gland (mean+/-S.E.M.) in controls to 0.26+/-0.03 nmol/gland. EGF mRNA levels, expressed relative to total RNA levels, only tended to be reduced after 3 weeks as judged from RT-PCR and in situ hybridization (ISH). The isoproterenol-treated rats had increased output of EGF in the saliva, but the salivary secretion of protein was also increased. In both glandular tissue and saliva, gel filtration revealed partially processed high molecular weight forms of EGF in the isoproterenol-treated rats. These data indicate that isoproterenol treatment leads to a hyperstimulatory state of the GCT cells, which then causes depletion of the cellular stores of mature EGF, and most likely due to a shortened posttranslational transit, incomplete peptide processing.  相似文献   

10.
The effect of vasoactive intestinal polypeptide (VIP) and acetylcholine on secretion of epidermal growth factor (EGF) from the rat salivary glands was investigated. VIP in doses of 3 X 10(-10) to 3 X 10(-8) mol/kg per h stimulated secretion of saliva and total output of EGF dose-dependently. Acetylcholine also stimulated salivation and output of EGF. VIP in a dose of 3 X 10(-11) to 3 X 10(-10) mol/kg per h enhanced the stimulatory effect of acetylcholine, but this effect disappeared when the dose of VIP was increased. Adrenalectomy decreased acetylcholine stimulated total output of EGF by approximately 50%, but only by 20% when acetylcholine plus VIP was administered. EGF was localized to the convoluted granular tubules in the submandibular gland, whereas EGF could not be detected in the remaining salivary glands. The results suggest that VIP and acetylcholine cooperate in the control of exocrine secretion from the rat salivary glands. The effect of acetylcholine, however, seems to be partly dependent on circulating catecholamines.  相似文献   

11.
Immunohistochemical demonstration of epidermal growth factor (EGF) and nerve growth factor (NGF) was made during chemical carcinogenesis in the mouse submandibular gland. The granular convoluted tubule cells in the normal male submandibular gland contained larger amounts of EGF and NGF than in the female. The initial phase and early stages in chemical carcinogenesis showed degranulation of the granular convoluted tubule cells with a marked decrease in EGF and NGF. Premalignant lesions such as duct-like structures and multicystic lesions showed variable staining for EGF and were usually negative for NGF. Material secreted into the luminal spaces revealed increased staining for EGF and NGF. Scattered tumor cells of the poorly differentiated squamous-cell carcinoma type and desquamated tumor cells contained abundant EGF, but not NGF. No positive reaction for EGF or NGF was found in the induced squamous-cell carcinoma cells.  相似文献   

12.
13.
Thyroid hormones are known to modulate the concentrations of epidermal growth factor (EGF) in the mouse submandibular gland (SMG); this action is presumably mediated by the nuclear triiodothyronine receptor. To test the hypothesis that thyroid hormones act to increase SMG EGF concentrations by increasing the number of poly(A)+ -specific mRNA, poly(A)+ RNA was isolated from SMGs of neonatal mice which had been treated daily from birth through to 21 days of age with thyroxine (T4,0.4 microgram/g body weight). Poly(A)+ RNA also was extracted from SMGs of intact 21-day-old mice which had received vehicle alone. No significant differences in total nucleic acid, total RNA, or poly(A)+ RNA yields were noted between the two groups of animals. The isolated poly(A)+ RNAs from T4-treated and control mice were translated in an in vitro wheat germ system. Although no significant differences in efficiency of [35S]cysteine incorporation into trichloracetic acid precipitable material were noted between the two poly(A)+ RNA preparations, a significantly greater proportion of radioactivity was immunoprecipitable by anti-EGF antiserum in the translation medium derived from T4-treated mice (17.2 +/- 0.9%, mean +/- SEM) than in that of control mice (7.3 +/- 0.5%, P less than 0.001). Polyacrylamide gel electrophoresis of the immunoprecipitates (IMMP) revealed the presence of three radioactive bands with apparent relative masses (MrS) of 12,000, 9000, and 6000. The latter species comigrated with purified EGF, [125I]EGF, and an IMMP of a SMG extract. The translation product IMMPs following polyacrylamide gel electrophoresis were iodinated and digested with alpha-chymotrypsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
The content of epidermal growth factor (EGF) as a high molecular weight complex (HMW-EGF) in the submandibular glands of mice was measured simply by a single radial immunodiffusion method. In female mice, the amount of HMW-EGF was increased 10-fold by tri-iodo-L-thyronine (T3) and 60-fold by 5 alpha-dihydrotestosterone (5 alpha-DHT). In mice with testicular feminization (Tfm), which are genetically deficient in androgen receptor, T3 but not 5 alpha-DHT increased the HMW-EGF from a non-detectable level to 5.4 +/- 0.94 micrograms/mg protein. It was concluded that EGF is also synthesized under the control of thyroid hormone in vivo, and that androgen was not involved in this induction of EGF by thyroid hormone.  相似文献   

16.
Earlier work has demonstrated that the salivary glands and kidneys are the major sites of epidermal growth factor (EGF) synthesis in adult mice. The precise timing of the onset of endogenous EGF synthesis in these tissues is not yet clear. In the present study we assessed the ontogenesis of EGF expression in the Swiss-Webster mouse. Paraformaldehyde-fixed frozen sections of neonatal kidneys and salivary glands were probed with proEGF cRNA labelled with 35S for in situ hybridization and with rabbit antisera to mouse EGF for immunocytochemistry. Both EGF mRNA and immunoreactivity were first detected in the developing distal nephron between days 3 and 5 postpartum. Juxtamedullary nephrons underlying the superficial nephrogenic zone were the first to express EGF. During the 2nd week after birth, EGF-expressing tubules became more abundant and distributed to medullary as well as cortical regions, corresponding to the thick ascending limb of Henle and distal convoluted tubule. Initial EGF mRNA and immunoreactivity in the submandibular gland were first detected between days 18 and 20 postpartum and increased notably during the following weeks.  相似文献   

17.
18.
The effects of strain, sex, hypophysectomy and hormone treatment on mouse submandibular gland renin, kallikrein, S2266 hydrolase, and BAEe esterase activities have been examined. Renin activity is determined by the Rnr locus on mouse Chromosome 1. Female SWR/J mice (Rnrs/Rnrs) have 1000-fold higher submandibular gland renin activity than C57BL/6J mice (Rnrb/Rnrb). Both strains have similar kallikrein activity. Renin, BAEe esterase, and S2266 hydrolase are substantially higher in male mice compared to females of the same strain whereas kallikrein is not. Dihydrotestosterone and/or thyroxine treatment induces renin, BAEe esterase, and S2266 hydrolase in female mice with little effect on kallikrein. All four enzyme activities are profoundly reduced by hypophysectomy. Dihydrotestosterone and thyroxine are both required to restore renin, BAEe esterase, and S2266 hydrolase to induced levels. Dihydrotestosterone and.or thyroxine restores kallikrein to control levels. We conclude that renin and kallikrein in the mouse submandibular gland are under different genetic and endocrine control. In addition, the synthetic substrate S2266 is not a specific substrate for kallikrein activity in mouse submandibular gland cytosol.  相似文献   

19.
20.
To eludicate hormonal regulation of epidermal growth factor (EGF) concentration we studied the effects in adult female mice of ovariectomy and postovariectomy treatments with testosterone plus estradiol on the EGF concentrations in submandibular salivary gland (SMG), plasma, kidneys and urine. In the tissues, we also studied the location of EGF immunohistochemically and measured EGF mRNA. After ovariectomy, SMG EGF first decreased to one third of preovariectomy level. After postovariectomy day 10 it started to increase and reached by day 80 3.5-fold the preovariectomy level. Simultaneously, EGF mRNA increased. Testosterone treatment further strongly augmented the levels of both EGF mRNA and EGF. A small dose of estradiol counteracted slightly the mRNA effect of testosterone. After ovariectomy plasma EGF first increased 1.3-fold by day 10, then returned to the initial levels, and rose again 1.6-fold by day 80. Testosterone treatment induced a further 1.5-fold increase. Estradiol did not counteract this effect. Kidney EGF decreased 15% by postovariectomy day 20. This was preceded by a decrease in EGF mRNA from day 10 onwards. The EGF concentration recovered during the 80 days, but the EGF mRNA level stayed low. Testosterone treatment further reduced the levels of both EGF mRNA and EGF. This effect was counteracted by estradiol. Urine EGF increased after ovariectomy to a peak (1.7-fold) by day 40. It then returned to the preovariectomy levels by day 80. Testosterone treatment increased urinary EGF 1.9-fold; concomitant estradiol had no effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号