首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The generation of transgenic mice with mammalian genes cloned in yeast artificial chromosomes (YACs) has generated great interest in the field of gene transfer into livestock. Many of the problems associated with standard transgenesis—such as lack of crucial regulator elements and position effects related to the integration site, which lead to variation in expression levels irrespective of the dose of the transgene—have been practically overcome. The large size of YAC-derived gene constructs (in excess of 1 Mb) facilitates the presence and transfer of all elements required for the faithful regulation of a gene. With the experiments discussed in this report, we have addressed the possibility of applying the obvious advantages of YAC transgenesis to farm animals. We have generated transgenic rabbits carrying a 250 kb YAC covering the mouse tyrosinase gene by pronuclear microinjection, and thus rescued the albino phenotype of the transgenic individuals. To date, this is the first demonstration of a successful transfer of large genetic units into the germ line of farm animals. This development might improve the occurrence of transgene expression at physiological levels and specific sites in livestock. YAC transgenesis therefore will be applied in genetic engineering, for example, in the production of pharmacologically interesting proteins encoded by large gene units and generating transgenic donors for xenotransplantation. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Many methods for efficient production of transgenic animals for biomedical research have been developed. Despite great improvements in transgenesis rates resulting from the use of intracytoplasmic sperm injection (ICSI), the ICSI‐based sperm‐mediated gene‐transfer (iSMGT) technique is still not optimal in terms of sperm permeabilization efficiency and subsequent development. Here, we demonstrate that streptolysin‐O (SLO) can efficiently permeabilize mouse spermatozoa, leading to improved developmental competence and high transgenesis rates in iSMGT embryos and pups. In particular, the most efficient production of iSMGT‐transgenic embryos resulted from pretreatment with 5 U/ml SLO for 30 min and co‐incubation with 1.0 ng/µl of an EGFP expression vector. By incubating spermatozoa with Cy‐3‐labelled DNA, we found that fluorescence intensity was prominently detected in the head region of SLO‐treated spermatozoa. In addition, blastocyst development rate and blastomere survival were greatly improved by iSMGT using SLO‐treated spermatozoa (iSMGT‐SLO) as compared to freeze‐thawed spermatozoa. Consistent with this, a high proportion of transgenic offspring was obtained by iSMGT‐SLO after transfer into foster mothers, reaching 10.6% of the number of oocytes used (42.3% among pups). Together with successful germline transmission of transgenes in all founders analyzed, our data strongly suggest that SLO makes spermatozoa amenable to exogenous DNA uptake, and that the iSMGT‐SLO technique is an efficient method for production of transgenic animals for biomedical research. Mol. Reprod. Dev. 80: 233–241, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The production of animals with large transgenes is an increasingly valuable tool in biotechnology and for genetic studies, including the characterization and manipulation of large genes and polygenic traits. In the present study, we describe an intracytoplasmic sperm injection (ICSI) method for the stable incorporation and phenotypic expression of large yeast artificial chromosomes (YAC) constructs of submegabase and megabase magnitude. By coinjecting spermatozoa and YACs into metaphase II oocytes, we were able to produce founders exhibiting germline transmission of an intact and functional transgene of 250 kilobases, carrying the mouse tyrosinase locus, used here as a reporter gene to rescue the albinism of recipient mice. More than 35% transgenesis was obtained for this YAC transgene. When compared with the pronuclear microinjection standard method, the efficiency of the ICSI-mediated YAC transfer system was significantly greater. In summary, we describe, for the first time, stable incorporation in the host genome and correct phenotypic expression of large DNA constructs mediated by ICSI.  相似文献   

4.
Jiang W  Zhou XY  Wang LL  Liu Q  Liu C  Wang Y  Wei H 《Transgenic research》2012,21(3):579-591
Xenogeneic skin, especially porcine skin, has already been used to cover large wounds in clinic practice of wound care. Our previous data showed that transgenic expression of human cytoxic T-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) in murine skin graft remarkably prolonged its survival in xenogeneic burn wounds without extensive immunosuppression in recipients, suggesting that transgenic hCTLA4Ig expression in skin graft may be an effective and safe method to prolong its survival in xenogeneic wounds for coverage. Lentiviral transgenesis provides an extremely efficient and cost-effective method to produce transgenic animals. However, tissue-targeted transgenic expression of biologically functional protein by lentiviral transgenesis is rarely reported. In this work, a recombinant lentiviral vector (LV), named FKCW in this article, was constructed by inserting a skin-specific hCTLA4Ig expression cassette consisting of keratin 14 (K14) promoter, hCTLA4Ig coding sequence and an intronic fragment. Its efficacy for transgenesis and skin-specific expression of bio-active hCTLA4Ig protein was tested using mice as models. The LV FKCW was readily to be packaged and concentrated to high titres (1.287-6.254 × 10(9) TU/ml) by conventional lentivirus package system. Using eggs collected from only five mated females having been subjected to conventional super-ovulation treatment, 8 hCTLA4Ig transgenic founder mice were generated with the concentrated FKCW vector, and transgenic founder per injected and transferred egg was 6.3%, which was nearly 9-fold higher than that for DNA micro-injection with a similar transgene construct in our previous work. The lentiviral transgenic hCTLA4Ig exhibited strictly skin-specific expression at a level comparable to or even slightly higher than that of transgenic hCTLA4Ig delivered by micro-injection in a similar cassette. Lentiviral transgenic hCTLA4Ig protein remarkably suppressed human lymphocyte proliferation in vitro to a degree comparable to that of commercially purchased purified hCTLA4Ig protein with defined activity at similar concentrations. Besides, lentiviral hCTLA4Ig transgenic mouse skin grafted into rat burn wounds exhibited remarkably extended survival compared to wild-type skin of the same strain (13.8 ± 3.8 vs. 6.8 ± 3.0 days), indicating that lentiviral transgenic hCTLA4Ig did inhibit immune rejection against xenogeneic skin graft in vivo. These results laid down the foundation to further efficiently generate transgenic pigs skin-specifically expressing bio-active hCTLA4Ig by lentiviral transgenesis, and provided a demonstration that transgenic animals with tissue-targeted expression of biologically functional protein can be efficiently produced using LV.  相似文献   

5.
The growing use of reporter genes in a model transgenic system has been a fundamental approach of biology, but the strategy of transgenic embryo selection prior to transfer to foster mothers may greately increase the efficiency of transgenic livestock production. This study was conducted to assess the possibility of beta-galactosidase (beta-gal)-labeled transgenic rabbit embryo production. Rabbit zygotes were obtained from superovulated females after mating. Zygotes were microinjected into male pronuclei with pCMV-lacZ or SV40-lacZ constructs; while some embryos were co-injected with the scaffold attachment sequences--SAR. Embryos from control non-injected and microinjected groups were cultured in vitro. After 24, 48, 72, or 96 h of culture the embryos were stained with X-gal for beta-galactosidase. Transgenic embryos produced by pronuclear injection showed a discrete pattern of beta-galactosidase expression. The percentage of transgenesis with pCMV-lacZalone was 1.5, but with SAR sequences it increased to 4.2. In the case of SV40-lacZ construct, the efficiency of transgenesis was 2.3% and 4.1%, respectively. The mosaicism was 66.7% for all embryos injected with both constructs with or without SAR. The highest numbers of 100%-transgenic (non-mosaic) embryos were found in the group co-injected with SV40-lacZ and SAR. Transgenesis was seen as early as 24 h after injection, in four-cell embryos. Most of the microinjected embryos showed delayed development as compared with control. It was concluded that lacZ may serve as a reliable reporter for early transgenic embryo selection in order to produce transgenic animals.  相似文献   

6.
As studies aim increasingly to understand key, evolutionarily conserved properties of biological systems, the ability to move transgenesis experiments efficiently between organisms becomes essential. DNA constructions used in transgenesis usually contain four elements, including sequences that facilitate transgene genome integration, a selectable marker and promoter elements driving a coding gene. Linking these four elements in a DNA construction, however, can be a rate-limiting step in the design and creation of transgenic organisms. In order to expedite the construction process and to facilitate cross-species collaborations, we have incorporated the four common elements of transgenesis into a modular, recombination-based cloning system called pTransgenesis. Within this framework, we created a library of useful coding sequences, such as various fluorescent protein, Gal4, Cre-recombinase and dominant-negative receptor constructs, which are designed to be coupled to modular, species-compatible selectable markers, promoters and transgenesis facilitation sequences. Using pTransgenesis in Xenopus, we demonstrate Gal4-UAS binary expression, Cre-loxP-mediated fate-mapping and the establishment of novel, tissue-specific transgenic lines. Importantly, we show that the pTransgenesis resource is also compatible with transgenesis in Drosophila, zebrafish and mammalian cell models. Thus, the pTransgenesis resource fosters a cross-model standardization of commonly used transgenesis elements, streamlines DNA construct creation and facilitates collaboration between researchers working on different model organisms.  相似文献   

7.
Vitrification is a technique for cryopreserving cells without crystallization due to elevation of the viscosity during the cooling process. We have developed a rapid and convenient mean of, cryopreserving mouse preimplantation embryos by vitrification using a solution (hereafter named DPS) consisting of 2.75m dimethylsulfoxide, 2.75m propylene glycol and 1.0m sucrose.In vitro fertilized pronucleate stage eggs were used because a large number of stage-matched eggs can be obtained at once. Only successfully fertilized eggs were collected and vitrified in DPS. After warming, two DNA constructs were injected into a total of 257 cryopreserved eggs, of which 175 (68%) survived the injection and were transferred into six recipients. All recipients became pregnant and gave birth to a total of 20 pups. When these DNA constructs were concomitantly injected into fresh eggs, 18% of eggs that were transferred developed into live pups, which was the same as the 18% figure for the cryopreserved eggs. With respect to transgenesis, 40% of the pups (8/20) developed from vitrified eggs were transgenic. In terms of the injected eggs that had been transferred, 4.5% of the 213 fresh eggs and 3.1% of the 112 vitrified eggs developed into transgenic mice. These results indicate that the efficiency of production of transgenic mice from vitrified eggs is comparable to that from fresh eggs.  相似文献   

8.
As a model system for vertebrate transgenesis, fish have many attractive advantages, especially with respect to the characteristics of eggs, allowing us to produce isogenic, transgenic, homozygous vertebrates by combining with chromosome-set manipulation. Here, we describe the large-scale production of isogenic transgenic homozygous animals using our experimental organism, the mud loach Misgurnus mizolepis, by the simple process of artificial parthenogenesis in a single generation. These isogenic fish have retained transgenic homozygous status in a stable manner during the subsequent 5 years, and exhibited increased levels of transgene expression. Furthermore, their isogenic nature was confirmed by cloned transgenic homozygous offspring produced via another step of parthenogenic reproduction of the isogenic homozygous transgenic fish. These results demonstrate that a combination of transgenesis and artificial parthenogenesis will make the rapid utilization of genetically pure homozygous transgenic system in vertebrate transgenesis possible.  相似文献   

9.
Transgenesis is a cornerstone of molecular biology. The ability to integrate a specifically engineered piece of DNA into the genome of a living system is fundamental to our efforts to understand life and exploit its implications for medicine, nanotechnology and bioprospecting. However, transgenesis has been hampered by position effects and multi-copy integration problems, which are mainly due to the use of small, plasmid-based transgenes. Large transgenes based on native genomic regions cloned into bacterial artificial chromosomes (BACs) circumvent these problems but are prone to fragmentation. Herein, we report that contrary to widely held notions, large BAC-sized constructs do not prohibit transposition. We also report the first reliable method for BAC transgenesis in human embryonic stem cells (hESCs). The PiggyBac or Sleeping Beauty transposon inverted repeats were integrated into BAC vectors by recombineering, followed by co-lipofection with the corresponding transposase in hESCs to generate robust fluorescent protein reporter lines for OCT4, NANOG, GATA4 and PAX6. BAC transposition delivers several advantages, including increased frequencies of single-copy, full-length integration, which will be useful in all transgenic systems but especially in difficult venues like hESCs.  相似文献   

10.
The meganuclease I-SceI has been effectively used to facilitate transgenesis in fish eggs for nearly a decade. I-SceI-mediated transgenesis is simply via embryo cytoplasmic microinjection and only involves plasmid vectors containing I-SceI recognition sequences, therefore regarding the transgenesis process and application of resulted transgenic organisms, I-SceI-mediated transgenesis is of minimal bio-safety concerns. However, currently no transgenic mammals derived from I-SceI-mediated transgenesis have been reported. In this work, we found that the native I-SceI molecule was not capable of facilitating transgenesis in mammalian embryos via cytoplasmic microinjection as it did in fish eggs. In contrast, the I-SceI molecule containing mammalian nuclear localization signal (NLS-I-SceI) was shown to be capable of transferring DNA fragments from cytoplasm into nuclear in porcine embryos, and cytoplasmic microinjection with NLS-I-SceI mRNA and circular I-SceI recognition sequence-containing transgene plasmids resulted in transgene expression in both mouse and porcine embryos. Besides, transfer of the cytoplasmically microinjected mouse and porcine embryos into synchronized recipient females both efficiently resulted in transgenic founders with germline transmission competence. These results provided a novel method to facilitate mammalian transgenesis using I-SceI, and using the NLS-I-SceI molecule, a simple, efficient and species-neutral transgenesis technology based on embryo cytoplasmic microinjection with minimal bio-safety concerns can be established for mammalian species. As far as we know, this is the first report for transgenic mammals derived from I-SceI-mediated transgenesis via embryo cytoplasmic microinjection.  相似文献   

11.
Intracytoplasmic sperm injection (ICSI) of DNA-loaded sperm cells has been shown to be a valuable tool for the production of transgenic animals, especially when DNA constructs with submegabase magnitude are used. In order to optimize and to understand the mechanism of the ICSI-mediated transgenesis, we have evaluated the impact of transgene DNA concentration, transgene flanking with nuclear matrix attachment regions (MARs), and the use of recombinase A (RecA)-coated DNA on the efficiency of mouse transgenesis production by ICSI. Presented data include assays with three DNA constructs; an enhanced green fluorescent protein (EGFP) plasmid of 5.4 kb, this plasmid flanked with two MAR elements (2.3 Kb of the human beta-interferon domain boundaries), and a yeast artificial chromosome (YAC) construct of ~510 kb (the largest transgenic construct introduced by ICSI that we have seen reported). ICSI-mediated transgenesis was done in the B6D2 mouse strain using different concentrations for each construct. Analysis of generated data indicated that ICSI allows the use of higher DNA concentrations than the ones used for pronuclear microinjection, however, when a certain threshold is exceeded, embryo/fetal viability decrease dramatically. In addition, independently of the transgene concentration tested, transgene flanking with MAR sequences did not have a significant impact on the efficiency of this transgenesis method. Finally, we observed that although the overall efficiency of ICSI-mediated transgenesis with fresh spermatozoa and RecA-complexed DNA was similar to the one obtained with the common ICSI-mediated transgenesis approach with frozen-thawed spermatozoa and RecA free DNA, this method was not as efficient in maintaining a low frequency of founder animal mosaicism, suggesting that different mechanisms of transgene integration might result from each procedure.  相似文献   

12.
13.
Although HLA-DQ8 has been implicated as a key determinant of genetic susceptibility to human type 1 diabetes, spontaneous diabetes has been observed in HLA-DQ8 transgenic mice that lack expression of murine MHC class II molecules (mII(-/-)) only when the potent costimulatory molecule, B7.1, is transgenically expressed on pancreatic beta cells. To study the contribution of HLA-DQ8 to the development of diabetes in this model, we crossed RIP-B7.1mII(-/-) mice with a set of transgenic mouse lines that differed in their HLA-DQ8 expression patterns on APC subpopulations, in particular dendritic cells and cortical thymic epithelial cells. Surprisingly, we found that even in the absence of HLA-DQ8 and CD4 T cells, a substantial fraction of the RIP-B7.1mII(-/-) mice developed diabetes. This disease process was remarkable for not only showing insulitis, but also inflammatory destruction of the exocrine pancreas with diffusely up-regulated expression of MHC class I and ICAM-1 molecules. Expression of HLA-DQ8 markedly increased the kinetics and frequency of diabetes, with the most severe disease in the lines with the highest levels of HLA-DQ8 on cortical thymic epithelial cells and the largest numbers of CD4 T cells. However, the adoptive transfer of diabetes was not HLA-DQ8-dependent and disease could be rapidly induced with purified CD8 T cells alone. Expression of B7.1 in the target tissue can thus dramatically alter the cellular and molecular requirements for the development of autoimmunity.  相似文献   

14.
We demonstrate enhanced transgenesis in mice by intracytoplasmic injection of envelope-free lentivirus. Envelope-free lentivirus carrying the green fluorescent protein (GFP) gene under the control of the ubiquitin promoter (LVU-GFP) was microinjected into the cytoplasm of mouse zygotes prior to embryo transfer. Ninety-seven percent (31/32) of the adult mice were confirmed transgenic by PCR and Southern blot analysis; all founder mice express GFP when tail snips were examined by fluorescent microscopy prior to genomic DNA extraction. Transgene insertion numbers ranging from 1 to 32 were revealed by Southern blot analysis. Germline transmission was confirmed by the presence of transgene in F1 offspring. As expected, a lower transgenic rate (2.2%; 1/46) resulted when envelope-free LVU-GFP was microinjected into the perivitelline space (PVS) because cell recognition followed by membrane fusion between the viral envelope and the target cell is prerequisite for successful infection by envelope viruses. Here we demonstrate the competence of envelope-free lentivirus in establishing stable gene integration by germline transgenesis in mice at high efficiency, by intracytoplasmic viral injection (INVI) of envelope-free lentivirus into mouse zygotes.  相似文献   

15.
16.
Model organisms expressing fluorescent proteins are important tools for research. The present study was performed to generate and characterize a new line of green fluorescent protein (GFP) transgenic rats for use as a model in experimental embryological research. We injected a GFP expression vector into 135 zygotes of the Sprague-Dawley (SD) rat strain. Embryo transfer of 103 surviving embryos resulted in the production of 35 offspring (33.9%) and two of them were transgenic (5.7%). Two transgenic rat lines that ubiquitously express GFP under the control of the cytomegalovirus-enhancer/beta-actin (CAGGS) promoter were generated by breeding. We studied the main embryological parameters of one these GFP transgenic lines. Homozygous GFP-transgenic females have the same ovulation and superovulation rates as wild type (WT) females. Transgenic embryos reached blastocyst stage in vitro and developed in vivo after embryo transfer without decrease in their developmental ability compared to the control group. The genotype of the parents determined the onset of GFP expression in preimplantation embryos. When the GFP gene is derived from the transgenic female parent, fluorescence was detected in oocytes and in embryos of all further stages of development. When the GFP gene is inherited by the transgenic male parent, GFP was only expressed from the blastocyst stage on. GFP-transgenic rats represent a valuable tool to mark embryos for many embryological studies such as transgenesis, gene expression patterns during early development, embryo aggregation for analysis of the distribution of cells in chimeric embryos and nuclear transfer to confirm the origin of the cloned offspring.  相似文献   

17.
Piezo-actuated mouse intracytoplasmic sperm injection (ICSI)   总被引:1,自引:0,他引:1  
The mouse is a genetically tractable model organism widely used to study mammalian development and disease. However, mouse metaphase II (mII) oocytes are exquisitely sensitive and intracytoplasmic sperm injection (ICSI) with conventional pipettes generally kills them. This problem can be solved with piezo-actuated micromanipulation, in which the piezo-electric effect (crystal deformation in response to an externally applied voltage) propels a microinjection needle tip forward in a precise and rapid movement. Piezo-actuated micromanipulation enhances the penetration of membranes and matrices, and mouse ICSI is a major application. Here we describe a comprehensive, step-by-step mouse piezo ICSI protocol for non-specialists that can be completed in 2-4 h. The protocol is a basic prelude to multiple applications, including nuclear transfer cloning, spermatid injection, blastocyst injection, mII transgenesis, and streamlining micromanipulation in primates and livestock. Moreover, piezo ICSI can be used to obtain offspring from 'dead' (non-motile) sperm, enabling trivial sperm freezing protocols for mouse strain storage and shipment.  相似文献   

18.
Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. The free-living flatworm Macrostomum lignano is currently the only flatworm where stable transgenesis is available, and as such it offers a powerful experimental platform to address questions that were previously difficult to answer. The published transgenesis approach relies on random integration of DNA constructs into the genome. Despite its efficiency, there is room and need for further improvement and diversification of transgenesis methods in M. lignano. Transposon-mediated transgenesis is an alternative approach, enabling easy mapping of the integration sites and the possibility of insertional mutagenesis studies. Here, we report for the first time that transposon-mediated transgenesis using piggyBac can be performed in M. lignano to create stable transgenic lines with single-copy transgene insertions.  相似文献   

19.
Small fish are a popular laboratory model for studying gene expression and function by transgenesis. If, however, the transgenes are not readily detectable by visual inspection, a large number of embryos must be injected, raised and screened to identify positive founder fish. Here, we describe a strategy to efficiently generate and preselect transgenic lines harbouring any transgene of interest. Co-injection of a selectable reporter construct (e.g., GFP), together with the transgene of interest on a separate plasmid using the I-SceI meganuclease approach, results in co-distribution of the two plasmids. The quality of GFP expression within the F0 generation therefore reflects the quality of injection and allows efficient and reliable selection of founder fish that are also positive for the second transgene of interest. In our experience, a large fraction (up to 50%) of GFP-positive fish will also be transgenic for the second transgene, thus providing a rapid (within 3-4 months) and efficient way to establish transgenic lines for any gene of interest in medaka and zebrafish.  相似文献   

20.
The microinjection method for production of transgenic farm animals requires specialized techniques and results in intolerably low production efficiencies. We investigated whether or not co-injection of foreign DNA constructs with restriction endonuclease into the pronucleus of mouse zygotes would improve the integration frequencies of foreign DNA into the host genome. Two kinds of DNA constructs that have no EcoRI site in their sequences were used for co-microinjection. With reference to the results of experiments in which EcoRI alone was injected at various amounts varying from 10(-9) to 10(-5) U/nucleus, the amount of 5x10(-8) U/nucleus that showed survival rate of 60.6% was used for the co-injection with DNA. Successful transgenesis of co-injected embryos was identified by DpnI-Bal31 digestion method for single embryos and by PCR method for pups born, respectively. The overall efficiency for the integration of foreign DNA in single embryos and live-born pups obtained by the co-injection procedures were 17.9% compared with 9.1% obtained by the injection of DNA alone. The results suggest that co-injection of foreign genes with restriction enzyme may elevate the integration rate of foreign genes into host genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号