首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To study the role of thromboxane A2 (TxA2) in cutaneous allergic reactions, the effect of (E)-3-[p-(1H-Imidazol-1-ylmethyl)phenyl]-2-propenoic acid hydrochloride (OKY-046), a selective TxA2 synthetase inhibitor, on cutaneous reactions in rats and mice was studied. Simultaneously, the effect of 9,11-methanoepoxy-prostaglandin H2 (U-46619), a stable analogue of TxA2, on capillary permeability in mouse and rat skin was investigated. Passive cutaneous anaphylaxis (PCA) in mouse ear was clearly inhibited by OKY-046 but not by indomethacin. The inhibitory action of OKY-046 was not influenced by pretreatment with indomethacin. Moreover, prostaglandin I2, which accumulated as a result of the inhibition of TxA2 synthetase, did not affect the PCA. But, the dye leakages caused by histamine, serotonin and leukotriene C4 in mouse ear were clearly inhibited by OKY-046. In addition, OKY-046 inhibited rat reversed cutaneous anaphylaxis, but its inhibitory action was not affected by pretreatment with indomethacin. Contrary to the above results, rat footpad passive Arthus reaction and mouse footpad tuberculin delayed hypersensitivity reaction were not affected by OKY-046. Additionally, U-46619 did not cause an increase of capillary permeability in either mouse and rat skin. These results suggest a slight role of TxA2 in cutaneous allergic reactions in mice and rats and the efficacy of OKY-046 on Type I and II reactions regardless of the inhibition of TxA2 synthetase activity.  相似文献   

2.
Arachidonic acid causes dose-dependent increases in pulmonary vascular resistance in perinatal lambs. The specific metabolites that produce this effect are not known; however, a role for thromboxanes (TX's), potent constrictors of vascular smooth muscle, has been proposed. The effects of a specific inhibitor of TX synthase, OKY-1581, were tested in newborn and ventilated fetal lambs using an in situ pump-perfused lower left lobe preparation. Pulmonary and systemic responses of newborns and ventilated fetuses to infusions of arachidonic acid were evaluated in the presence and absence of OKY-1581. Increases in pulmonary vascular resistance caused by arachidonic acid were diminished by TX synthase inhibition. The degree of systemic hypotension observed with arachidonic acid infusions was significantly greater in animals receiving OKY-1581 than in animals without the inhibitor. The effect of OKY-1581 on periods of hypoxia was also evaluated in newborn lambs. There were no significant differences in the hypoxic pressor response in lambs with and without TX synthase inhibition. These results suggest that OKY-1581 can reduce most of the pulmonary vasoconstriction produced by arachidonic acid in perinatal lambs.  相似文献   

3.
OKY-1581 is an effective inhibitor of thromboxane synthesis and . The generation of thromboxane B2 (TxB2), prostaglandin E (PGE) and prostaglandin F (PGF) was measured following clotting and during platelet aggregation induced by collagen. The presence of OKY 1581 either or caused a reduction in TxB2 generation during clotting and platelet aggregation with a concomitant increase in PGE and PGF. The effect could be observed two hours after oral or subcutaneous administration of 5 to 100 mg per rabbit and lasted for 24 to 48 hours. The reduction in TxB2 was not accompanied by an inhibition of clotting or platelet aggregation. OKY-1581 appears to be a suitable agent for studying the role of TxB2 in atherosclerosis.  相似文献   

4.
Effects of thromboxane A2 on lymphocyte proliferation   总被引:2,自引:0,他引:2  
The main cyclooxygenase-dependent arachidonic acid derivatives produced by monocytes and macrophages have been shown to be thromboxane A2 and prostaglandin E2. The immunomodulatory effects of thromboxane A2 were examined using a specific thromboxane synthase inhibitor (dazoxiben), a thromboxane A2 analog (U46619), and a thromboxane A2 receptor blocker (BM13.177). Dazoxiben inhibited lymphocyte proliferation in response to mitogens (PHA and OKT3), but also reoriented cyclic endoperoxide metabolism towards the production of prostaglandin E2. Prostaglandin E2 has been shown previously to inhibit mitogen-induced lymphocyte proliferation. U46619, a stable thromboxane A2 analog, slightly enhanced lymphocyte responses to mitogens in the presence of dazoxiben and in the presence of a cyclooxygenase inhibitor (indomethacin). This occurred at concentrations of U46619 which are probably supraphysiological in view of the short half-life of natural thromboxane A2. Finally, the thromboxane A2 receptor blocker BM13.177 did not have any effect on mitogen-induced lymphocyte proliferation. It is concluded that thromboxane A2 has no or minimal modulatory effects on lymphocyte proliferative responses to mitogens and that the effect of thromboxane A2 synthase inhibition is rather due to reorientation of cyclic endoperoxide metabolism, resulting in increased prostaglandin E2 production.  相似文献   

5.
H Patscheke 《Blut》1990,60(5):261-268
Urinary and plasma metabolites of thromboxane A2 (TxA2) indicate an increased TxA2 synthesis in a number of diseases, whereby TxA2 is assumed to contribute to the underlying pathomechanisms by its profound effects on platelet aggregation and smooth muscle contraction. In some clinical situations the increment in TxA2 biosynthesis is accompanied by an increased formation of prostacyclin (PGI2) which is one of the most potent inhibitors of platelet activation and smooth muscle contraction. Therefore, drugs are being developed which suppress the formation or action of TxA2 without interfering with its functional antagonist PGI2. Low doses of acetylsalicyclic acid (ASA) preferentially inhibit cyclooxygenase activity in platelets and the synthesis of TxA2 in vivo. However, neither low doses (approximately 300 mg/day) nor very low doses spare the formation of PGI2 completely. Despite its limited selectivity, very low dose ASA (approximately 40 mg/day) provides an attractive perspective in TxA2 pharmacology. Although thromboxane synthase inhibitors selectively suppress TxA2 biosynthesis PGH2 can accumulate instead of TxA2 and substitute for TxA2 at their common TxA2/PGH2 receptors. Thromboxane synthase inhibitors can only exert platelet-inhibiting and vasodilating effects if PGH2 rapidly isomerizes to functional antagonists like PGI2 that can be formed from platelet-derived PGH2 by the vessel wall. TxA2/PGH2 receptor antagonists provide a specific and effective approach for inhibition of TxA2. These inhibitors do not interfere with the synthesis of PGI2 and other prostanoids but prevent TxA2 and PGH2 from activating platelets and inducing smooth muscle contractions. Most of the available TxA2/PGH2 receptor antagonists produce a competitive antagonism that can be overcome by high agonist concentrations. Since in certain disease states very high local TxA2 concentrations are to be antagonized, non-competitive receptor antagonists may be of particular interest. Some recent TxA2/PGH2 receptor antagonists produce such a non-competitive type of inhibition due to their low dissociation rate constant. As a consequence, agonists like TxA2 or PGH2 only reach a hemiequilibrium state at their receptors, previously occupied by those antagonists. A combination of a thromboxane synthase inhibitor with a TxA2/PGH2 receptor antagonist presents a very high inhibitory potential that utilizes the dual activities of the synthase inhibitor to increase PGI2 formation and of the receptor antagonist to antagonize PGH2 and TxA2. Such combinations or dual inhibitors, combining both moieties in one compound, prolong the skin bleeding time to a greater extent than thromboxane synthase inhibitors and even more than low dose ASA or TxA2/PGH2 receptor antagonists.  相似文献   

6.
The effect of cyclooxygenase inhibition in phorbol myristate acetate (PMA)-induced acute lung injury was studied in isolated constant-flow blood-perfused rabbit lungs. PMA caused a 51% increase in pulmonary arterial pressure (localized in the arterial and middle segments as measured by vascular occlusion pressures), a 71% increase in microvascular permeability (measured by the microvascular fluid filtration coefficient, Kf), and a nearly threefold increase in perfusate thromboxane (Tx) B2 levels. Cyclooxygenase inhibition with three chemically dissimilar inhibitors, indomethacin (10(-7) and 10(-6) M), meclofenamate (10(-6) M), and ibuprofen (10(-5) M), prevented the Kf increase without affecting the pulmonary arterial pressure increase or resistance distribution changes after PMA administration. The specific role of TxA2 was investigated by pretreatment with OKY-046, a specific Tx synthase inhibitor, or infusion of SQ 29548, a TxA2 receptor antagonist; both compounds failed to protect against either the PMA-induced permeability or the vascular resistance increase. These results indicate that cyclooxygenase-mediated products of arachidonic acid other than TxA2 mediate the PMA-induced permeability increase but not the hypertension.  相似文献   

7.
The effects of OKY-1581, a thromboxane synthesis inhibitor, on pulmonary vascular responses to arachidonic acid (AA) were investigated under baseline and elevated tone conditions in the intact chest cat. Under conditions of controlled blood flow at baseline tone, intralobar injections of AA increased lobar arterial pressure in a dose-related manner. These pressor responses were reduced by OKY-1581, and a small vasodilator response was unmasked. The administration of indomethacin to these same animals abolished all responses to AA. When baseline tone in the pulmonary vascular bed was elevated by infusion of U46619, intralobar injections of AA caused a biphasic change in lobar arterial pressure characterized by an initial increase followed by a secondary fall in pressure. Treatment with OKY-1581 attenuated the pressor component of the response and enhanced the depressor component of the response. All responses to AA at elevated tone were also blocked by indomethacin. Pressor responses to intralobar injections of U46619 were not altered by OKY-1581 or indomethacin and were similar under baseline and high pulmonary vascular tone conditions. The results of this study suggest that the pulmonary pressor response to AA in the cat is dependent in large part on the formation of TXA2 and also suggest that TXA2, PGI2, and vasoconstrictor prostaglandins (PGF2 alpha, PGD2, PGE2) are formed from AA in the cat lung.  相似文献   

8.
OKY-1581 is an effective inhibitor of thromboxane synthesis invivo and invitro. The generation of thromboxane B2 (TxB2), prostaglandin E (PGE) and prostaglandin F (PGF) was measured following clotting and during platelet aggregation induced by collagen. The presence of OKY 1581 either invivo or invitro caused a reduction in TxB2 generation during clotting and platelet aggregation with a concomitant increase in PGE and PGF. The effect could be observed two hours after oral or subcutaneous administration of 5 to 100 mg per rabbit and lasted for 24 to 48 hours. The reduction in TxB2 was not accompanied by an inhibition of clotting or platelet aggregation. OKY-1581 appears to be a suitable agent for studying the role of TxB2 in atherosclerosis.  相似文献   

9.
The purpose of this study was to elucidate the mechanism of action of arachidonic acid in the isolated rat heart perfused with Krebs solution at a constant flow. Administration of arachidonic acid, 3.3-33 nmol, into the heart caused a small transient increase followed by a pronounced decrease in coronary perfusion pressure and increased myocardial tension, heart rate, and the output of prostaglandins (6-keto-PGF1 alpha, PGE2, and PGF2 alpha). Administration of structurally similar fatty acids, dihomo-gamma-linolenic acid, and 8,14,17-eicosatrienoic acid, produced vasoconstriction and decreased myocardial tension without affecting heart rate or the output of prostaglandins. Infusion of PGI2, PGF2 alpha, or PGE2 produced coronary vasodilation and increased myocardial tension, whereas PGF2 alpha increased heart rate, an effect which was not prevented by propranolol. Indomethacin blocked the effect of arachidonic acid on myocardial tension and heart rate, but only reduced the duration of coronary vasodilation. The initial component of arachidonic acid induced coronary vasodilation which was unaffected by indomethacin and also remained unaltered during the infusion of three structurally dissimilar lipoxygenase inhibitors, eicosatetraynoic acid, nordihydroguaiaretic acid, and 1-phenyl-3-pyrazolidone. Indomethacin did not alter the effects of the exogenously administered prostaglandins on perfusion pressure or myocardial tension; however, it blocked the effect of PGF2 alpha on heart rate. The effect of arachidonic acid or PGF2 alpha to increase heart rate was not blocked by thromboxane synthetase inhibitors, imidazole, or OKY-1581. We conclude that the cardiac effects of arachidonic acid are mediated primarily through its conversion to cyclooxygenase products.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The TxA2 synthetase inhibitor, dazoxiben, and the TxA2 antagonist, +/- SQ 29,548, were examined for effects on release and vasoactivity of TxA2 and prostacyclin. Isolated perfused guinea pig lungs were used as the enzyme source from which TxA2 and prostacyclin were released in response to injections of arachidonic acid or bradykinin. Both dazoxiben and +/- SQ 29, 548 inhibited contraction of the superfused rat aorta and bovine coronary artery after arachidonic acid injection through the lung. +/- SQ 29,548 abolished contractions of the rat aorta, but significant aorta contracting activity persisted during dazoxiben treatment. Dazoxiben significantly inhibited arachidonate-induced release of TxA2 (immunoreactive TxB2) into the superfusate, but TxA2 release was significantly potentiated by +/- SQ 29,548. Thus, in the presence of enhanced TxA2 concentrations, +/- SQ 29,548 effectively antagonized the vasospastic effect of TxA2. Dazoxiben diverted a significantly greater amount of arachidonic acid into prostacyclin synthesis (immunoreactive 6-keto-PGF1 alpha), changing original coronary vasoconstriction into relaxation. +/- SQ 29,548 did not significantly modify lung prostacyclin synthesis. Moreover, with +/- SQ 29,548, the absence of TxA2-mediated coronary contraction unmasked active relaxation of the superfused bovine coronary artery, coincident with thromboxane and prostacyclin release. Dazoxiben consistently inhibited TxA2 synthesis and enhanced prostacyclin synthesis. +/- SQ 29,548 augmented TxB2 release in response to arachidonate, but not bradykinin, and did not significantly alter 6-keto-PGF1 alpha release in response to either arachidonate or bradykinin. In terms of vasoactivity measured in vitro, +/- SQ 29,548 and dazoxiben produced similar anti-vasospastic effects, although this was accomplished by completely different mechanisms.  相似文献   

11.
We investigated the effect of phorbol myristate acetate (PMA) in isolated guinea pig lungs perfused with phosphate-buffered Ringer solution. Pulmonary arterial pressure (Ppa), pulmonary capillary pressure (Ppc), and change in lung weight were recorded at 0, 10, 25, 40, and 70 min. The capillary filtration coefficient (Kf), an index of vascular permeability, was measured at 10 and 70 min. The perfusion of PMA (0.5 x 10(-7) M) increased Ppa, Ppc, and lung weight at 70 min. The ratio of arterial-to-venous vascular resistance (Ra/Rv) decreased and the Kf did not change with PMA. The perfusion of the lung with 4 alpha-phorbol didecanoate (inactive toward the protein kinase C analogue of PMA) did not affect the lung. The inhibition of TxA2 synthase with dazoxiben inhibited the response to PMA. The inhibition of the 5-lipoxygenase with U-60257 and the SRS-A receptor antagonist FPL 55712 also prevented the response to PMA. The addition of superoxide dismutase (SOD), catalase, or SOD plus catalase (the enzymes that remove O.2 H2O2, and OH., respectively) did not prevent the PMA effect or the release of TxA2; however, dimethylthiourea (DMTU), a scavenger of OH., did prevent the response to PMA. The data indicate that PMA causes a neutrophil-independent increase in lung weight due to increases in Ppc mediated by TxA2 and SRS-A. The protective effect of DMTU may be due to the inhibition of TxA2 generation.  相似文献   

12.
Using a cloned murine cell line, NKB61A2, that concomitantly exhibits both NK and natural cytotoxic (NC) activities, we investigated the biochemical mechanisms involved in natural cell mediated cytotoxicity against NK-sensitive YAC-1 tumor cells and against the NC-sensitive WEHI-164 tumor cells. Recent reports have suggested that target cell lysis by cytotoxic lymphocytes occurs by either a calcium dependent and/or a calcium-independent mechanism(s). To determine the role of calcium in NK and NC activities of the NKB61A2 cell line, we evaluated the effect of: 1) extracellular Ca2+ depletion by the divalent cation chelator, EGTA, 2) Ca2+ influx blockade by the Ca2+ channel blocker verapamil, and 3) blocking of intracellular Ca2+ mobilization by 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8). We found that EGTA, verapamil, and TMB-8 were all capable of inhibiting NK activity, but they had little effect on NC activity of the NKB61A2 cells. Using 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide which are inhibitors of protein kinase C and calmodulin respectively, we determined that protein kinase C and calmodulin do play a role in the NK activity of NKB61A2 cells. 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and N-(6-aminohexyl)-5-chloro-1-naphthalanesulfonamide, similar to Verapamil and TMB-8, had no effect on NC activity. Thus, the data indicate that the NK activity of NKB61A2 cells is calcium dependent whereas NC activity is not. These results may explain the disparate reports seen in the literature of calcium-dependent and -independent lysis of tumor cells.  相似文献   

13.
The in vivo effectiveness of the thromboxane synthetase inhibitor OKY-1581 was tested in normal and infarcted canine myocardium. A rapid in vitro assay was developed which permits an accurate assessment of the status of the tissue thromboxane synthetase at the time of sacrifice. Reperfused infarcts were created by two hours of coronary artery occlusion followed by release of occlusion and three days of recovery. OKY-1581 was infused at 100 micrograms/kg/min for 15 minutes, a dose previously found to cause an 85% inhibition of canine platelet thromboxane synthetase in vivo. The heart was rapidly excised and transmural tissue plugs of infarcted and normal areas were obtained. These were incubated for 5 minutes with prostaglandin endoperoxide (PGH2) in phosphate buffer. Thromboxane production was inhibited from 16 +/- 1 ng TxB2 per tissue plug to 5 +/- 1 in normal myocardium and from 27 +/- 5 to 6 +/- 1 in infarcted areas of myocardium. Control incubations showed no further inhibition with the in vitro addition of 20 micrograms/ml OKY-1581, confirming the completeness of in vivo inhibition. Thus significant inhibition of thromboxane synthetase by intravenous OKY-1581 occurs even in a reperfused zone of infarction.  相似文献   

14.
We investigated the effects of OKY-046, a potent and selective thromboxane A2 (TxA2) synthetase inhibitor, on anaphylactic bronchoconstriction and release of chemical mediators into airway lumen in sensitized guinea pigs in vivo. OKY-046 dose-dependently inhibited antigen-induced anaphylactic bronchoconstriction with or without mepyramine, a histamine H1 antagonist. In the presence of mepyramine, OKY-046 (300 mg/kg, p.o.) elicited significant reductions in histamine (1 min) and TxB2 increases (1-15 min) in bronchoalveolar lavage (BAL) fluid but significantly increased the plasma level of 6-keto-PGF1 alpha, a stable PGI2 metabolite, after antigen challenge. On the contrary, indomethacin only significantly reduced increases in TxB2 levels. These results suggest that the antiasthmatic effect of OKY-046 is probably due to inhibition of TxA2 synthesis and suppression of histamine release via a PGI2 shunting mechanism.  相似文献   

15.
Human seminal plasma has uniquely high concentrations of PGE and 19-hydroxy PGE but the function of these PGs has not been elucidated. PGs of the E series have been shown to be paracrine and autocrine regulators of the function of immune cells and high levels of PGE have been shown consistently to suppress function in such cells. Human seminal plasma has a potent immunosuppressive effect and evidence is accumulating that this is largely due to PG components. In this study the effects of human seminal plasma on the killing activity of natural killer (NK) cells as judged by 51Cr release from K562 cells have been studied in groups of fertile and infertile men. Although there was no significant difference in the PGE, 19-hydroxy PGE or the NK cell inhibitory activity in the two groups, the inhibition of NK cell activity was closely correlated with the PGE and the 19-OH PGE content of the seminal plasma in the fertile group. This finding is further evidence that the major contribution to the immunosuppressive properties of human semen is provide by the high concentration of PGs of the E series in this fluid.  相似文献   

16.
Stimulation of rat mesangial cells for 24 h with interleukin-1beta (IL- 1beta) plus forskolin (Fk) leads to a marked increase in prostaglandin E2 (PGE2) synthesis. This effect is further enhanced by the small G-protein Rho inhibitor toxin A. A similar increase in PGE2 formation is obtained with Y27632, a Rho-dependent kinase inhibitor, and with lovastatin, a hydroxymethylglutaryl-coenzyme A inhibitor which depletes cells from geranylgeranyl moieties and thus blocks Rho activation. In parallel to the increased PGE2 synthesis, a potentiation of IL-1beta-induced secretory group IIA phospholipases A2 (sPLA2-IIA) protein expression also occurs by Rho inhibition. However, only toxin A triggers an increased sPLA2-IIA activity consistent with the elevated levels of protein expression, whereas Y27632 and lovastatin rather reduced IL-1beta-induced sPLA2-IIA activity. In vitro activity studies reveal that Y27632 and lovastatin can directly block sPLA2-IIA enzyme activity in a concentration-dependent manner. Interestingly, in the absence of IL-1beta/Fk stimulation and the lack of sPLA2-IIA protein expression, all Rho inhibitors exert a small but significant increase in PGE2 formation suggesting that additional PLA2s or downstream enzymes like cyclooxygenases or prostaglandin synthases may be activated by Rho inhibitors. Western blot analyses of toxin A-, Y27632- and lovastatin-stimulated cells reveal that the cytosolic group IV PLA2 (cPLA2) and the cytosolic PGE2 synthase (cPGES), but not the sPLA2-IIA, cyclooxygenase-2 or the microsomal PGE2 synthase (mPGES), are upregulated compared to unstimulated cells. Furthermore, the Rho inhibitors induced arachidonic acid release from intact cells which is blocked by the cPLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP). In summary, these data show that inhibition of the small G-protein Rho, either by toxin A, lovastatin, or Y27632, exert a dual effect on mesangial cells: (i) in the absence of an inflammatory stimulus it activates the constitutive cPLA2 and cPGE2 synthase and generates low amount of PGE2. (ii) In the presence of inflammatory cytokines it potentiates sPLA2-IIA expression and subsequent PGE2 formation. In addition, we identified lovastatin and Y27632 as direct inhibitors of sPLA2-IIA in a cell-free system.  相似文献   

17.
The effects of OKY-046, a selective thromboxane A2 (TxA2) synthetase inhibitor, ONO-3708, a novel TxA2 receptor antagonist, AA-861, a selective 5-lipoxygenase inhibitor and LY-171883, a peptide leukotrienes (p-LTs) receptor antagonist on the chronic liver injury were investigated in mice. The chronic liver injury was induced by the injection of carbon tetrachloride (CCl4) two times a week for twelve weeks in mice. In chronic liver injury models, significant histopathological changes in the liver and extensive elevation of glutamate transaminase (GOT and GPT) activity were observed. Administration of OKY-046, ONO-3708, AA-861 and LY-171883 for 12 weeks suppressed the elevation of serum GOT and GPT levels and histopathological changes in CCl4-induced chronic liver injury. These results suggest that TxA2 and LTs inhibitors are effective for the onset and development of chronic liver injury in mice.  相似文献   

18.
In the present study, we have shown that IL-1beta increased BDNF mRNA expression in hypothalamic neuron-enriched cultures whereas it reduced this expression in mixed cultures, i.e. containing astrocytes and neurons. Because functional relationships between stress and immunity signals are well documented we investigated the possible interaction between BDNF and IL-1beta in hypothalamic neurons. Notably, we investigated whether IL-1beta affected BDNF expression in vitro either on hypothalamic mixed cultures or on neuron-enriched cultures. We found that the response to IL-1beta was stimulatory when directly examined in neurons but was inhibitory when astrocytes were present in the cultures. Since it has been documented that astrocytes release PGE2 in response to IL-1beta, we examined the effect of indomethacin (a PGE2 synthesis inhibitor) on mixed or neuron-enriched cultures treated with IL-1beta. Indomethacin blocked both stimulatory and inhibitory IL-1beta effects on BDNF mRNA expression whereas picrotoxin (a GABA(A) blocker) or MK-801 (a NMDA receptor blocker) had no effect on BDNF mRNA levels. About 3 and 6h treatments of cells with exogenous PGE2 reproduced the effects of IL-1beta on neuron-enriched or on mixed cultures suggesting that PGE2 was involved in BDNF mRNA regulation. Analysis of PGE2 receptors mRNA expression revealed that the PGE2 receptor pattern was changed when neuron-enriched cultures were treated with conditioned medium produced by astrocytes treated with IL-1beta. Thus, EP3 mRNA levels were increased while EP1 and EP4 messengers were unchanged. This increased expression of the inhibitory prostaglandin receptor under astrocyte influence can explain the inhibition of BDNF mRNA levels observed in mixed cultures following IL-1beta or PGE2 treatment. Finally, we demonstrated by immunocytochemistry that EP3 receptors had a neuronal localization in the hypothalamic cultures. Taken together, these data contribute to underline an emerging physiological concept postulating that a same molecule may have opposite effects as a function of the cellular context.  相似文献   

19.
The influence of daltroban (BM13.505; SK&F 96148), a thromboxane (Tx) A2-receptor-blocking agent, on responses to the TxA2 mimics U-46619 and U-44069 was investigated in the pulmonary vascular bed of the intact-chest cat under constant-flow conditions. Daltroban (5 mg/kg iv) had no significant effect on mean baseline vascular pressures but significantly decreased responses to the TxA2 mimics without altering responses to prostaglandin (PG) F2 alpha or PGD2 or the PGD2 metabolite 9 alpha, 11 beta-PGF2. Dose-response curves for U-46619 and U-44069 were shifted to the right in a parallel manner, and daltroban had no significant effect on responses to norepinephrine, serotonin, angiotensin II, BAY K 8644, endothelin-(ET) 1, ET-2, or platelet-activating factor (PAF). After administration of daltroban, responses to U-46619 returned to 50% of control in 90 min and responses to the PG and TxA2 precursor arachidonic acid were decreased significantly. These results suggest that daltroban selectively antagonizes TxA2-receptor-mediated responses in a competitive and reversible manner. These data provide support for the hypothesis that discrete TxA2 receptors unrelated to receptors stimulated by PGF2 alpha, PGD2, or 9 alpha, 11 beta-PGF2 are present in the pulmonary vascular bed of the cat. The present data suggest that pulmonary vasoconstrictor responses to PAF and ET peptides are not dependent on activation of TxA2 receptors in the cat.  相似文献   

20.
Chemically synthesized leukotriene C4, D4, and E4 have been compared for their effects on the isolated Krebs-perfused rat kidney, rat stomach strip, and guinea pig ileum. C4 was more potent than D4 or E4 at all concentrations tested in contracting the rat stomach strip and in constricting the isolated rat kidney, while D4 was more potent than C4 or E4 in contracting the guinea pig ileum. While the effect of leukotrienes on the isolated kidney was blocked dose dependantly by FPL 55712, a blocker of leukotriene action, it was not blocked by the presence of either indomethacin, a cyclooxygenase blocker, or OKY-1581, a blocker of thromboxane synthesis. These results indicate that leukotriene action in the kidney is of a direct nature and is not mediated via activation of the prostaglandin pathway, especially thromboxane A2 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号