首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has been shown previously that Escherichia coli accumulates endogenously synthesized trehalose under osmotic stress. We report here that E. coli contained an osmotically regulated trehalose-phosphate synthase which utilized UDP-glucose and glucose 6-phosphate as substrates. In the wild type, the synthase was induced by growth in glucose-mineral medium of elevated osmotic strength and the synthase itself was strongly stimulated by K+ and other monovalent cations. A laboratory strain which expressed the synthase at a high constitutive level was found. GalU mutants, defective in synthesis of UDP-glucose, did not accumulate trehalose. Two genes governing the synthase were identified and named otsA and otsB (osmoregulatory trehalose synthesis). They mapped near 42 min in the flbB-uvrC region. Mutants with an otsA-lacZ or otsB-lacZ operon fusion displayed osmotically inducible beta-galactosidase activity; i.e., the activity was increased fivefold by growth in medium of elevated osmotic strength. Mutants unable to synthesize trehalose (galU, otsA, and otsB) were osmotically sensitive in glucose-mineral medium. But an osmotically tolerant phenotype was restored in the presence of glycine betaine, which also partially repressed the synthesis of synthase in the wild type and of beta-galactosidase in ots-lacZ fusion mutants.  相似文献   

2.
Strains of Thermus thermophilus accumulate primarily trehalose and smaller amounts of mannosylglycerate in response to salt stress in yeast extract-containing media (O. C. Nunes, C. M. Manaia, M. S. da Costa, and H. Santos, Appl. Environ. Microbiol. 61:2351-2357, 1995). A 2.4-kbp DNA fragment from T. thermophilus strain RQ-1 carrying otsA (encoding trehalose-phosphate synthase [TPS]), otsB (encoding trehalose-phosphate phosphatase [TPP]), and a short sequence of the 5' end of treS (trehalose synthase [TreS]) was cloned from a gene library. The sequences of the three genes (including treS) were amplified by PCR and sequenced, revealing that the genes were structurally linked. To understand the role of trehalose during salt stress in T. thermophilus RQ-1, we constructed a mutant, designated RQ-1M6, in which TPS (otsA) and TPP (otsB) genes were disrupted by gene replacement. Mutant RQ-1M6 accumulated trehalose and mannosylglycerate in a medium containing yeast extract and NaCl. However, growth in a defined medium (without yeast extract, known to contain trehalose) containing NaCl led to the accumulation of mannosylglycerate but not trehalose. The deletion of otsA and otsB reduced the ability to grow in defined salt-containing medium, with the maximum salinity being 5% NaCl for RQ-1 and 3% NaCl for RQ-1M6. The lower salt tolerance observed in the mutant was relieved by the addition of trehalose to the growth media. In contrast to trehalose, the addition of glycine betaine, mannosylglycerate, maltose, and glucose to the growth medium did not allow the mutant to grow at higher salinities. The results presented here provide crucial evidence for the importance of the TPS/TPP pathway for the synthesis and accumulation of trehalose and the decisive contribution of this disaccharide to osmotic adaptation in T. thermophilus RQ-1.  相似文献   

3.
In this study we correlate the presence of genes leading to the synthesis of trehalose and mannosylglycerate (MG) in 17 strains of the genus Thermus with the ability of the strains to grow and accumulate these compatible solutes in a defined medium containing NaCl. The two sets of genes, namely, otsA/otsB for the synthesis of trehalose and mpgS/mpgP for the synthesis of MG, were necessary for the growth of Thermus thermophilus in a defined medium containing up to 6% NaCl. Strains lacking a complete otsA gene did not grow in defined medium containing >2% NaCl. One strain of T. thermophilus lacking the genes for the synthesis of MG did not grow in a medium with >1% NaCl. We did not identify any of these genes in the type strains of the other seven species of Thermus, and none of those strains grew in defined medium with 1% NaCl. The results strongly indicate that the combined accumulation of trehalose and MG is required for optimal osmotic adjustment.  相似文献   

4.
Corynebacterium glutamicum, a soil bacterium, is used to produce amino acids such as lysine and glutamate. C. glutamicum is often exposed to osmolality changes in its medium, and the bacterium has therefore evolved several adaptive response mechanisms to overcome them. In this study we quantify the metabolic response of C. glutamicum under osmotic stress using elementary mode analysis (EMA). Further, we obtain the optimal phenotypic space for the synthesis of lysine and formation of biomass. The analysis demonstrated that with increasing osmotic stress, the flux towards trehalose formation and energy-generating pathways increased, while the flux of anabolic reactions diminished. Nodal analysis indicated that glucose-6-phosphate, phosphoenol pyruvate, and pyruvate nodes were capable of adapting to osmotic stress, whereas the oxaloacetic acid node was relatively unresponsive. Fewer elementary modes were active under stress indicating the rigid behavior of the metabolism in response to high osmolality. Optimal phenotypic space analysis revealed that under normal conditions the organism optimized growth during the initial log phase and lysine and trehalose formation during the stationary phase. However, under osmotic stress, the analysis demonstrated that the organism operates under suboptimal conditions for growth, and lysine and trehalose formation.  相似文献   

5.
In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways.  相似文献   

6.
Metabolic regulation of the trehalose content of vegetative yeast.   总被引:6,自引:0,他引:6  
We have investigated the mechanism by which heat shock conditions lead to a reversible accumulation of trehalose in growing yeast. When cells of S. cerevisiae M1 growing exponentially at 30 degrees C were shifted to 45 degrees C for 20 min, or to 39 degrees C for 40 min, the concentration of trehalose increased by about 25-fold; an effect reversed upon lowering the temperature to 30 degrees C. This was compared to the more than 50-fold rise in trehalose levels obtained upon transition from the exponential to the stationary growth phase. Whereas the latter was paralleled by a 12-fold increase in the activity of trehalose-6-phosphate synthase, no significant change in the activities of trehalose-synthesizing and -degrading enzymes was measured under heat shock conditions. Accordingly, cycloheximide did not prevent the heat-induced accumulation of trehalose. However, the concentrations of the substrates for trehalose-6-phosphate synthase, i.e. glucose-6-phosphate and UDP-glucose, were found to rise during heat shock by about 5-10-fold. Since the elevated levels of both sugars are still well below the Km-values determined for trehalose-6-phosphate synthase in vitro, they are likely to contribute to the increase in trehalose under heat shock conditions. A similar increase in the steady-state levels was obtained for other intermediates of the glycolytic pathway between glucose and triosephosphate, including ATP. This suggests that temperature-dependent changes in the kinetic parameters of glycolytic enzymes vary in steady-state levels of intermediates of sugar metabolism, including an increase of those that are required for trehalose synthesis. Trehalose, glucose-6-phosphate, UDP-glucose, and ATP, were all found to increase during the 40 min heat treatment at 39 degrees C. Since this also occurs in a mutant lacking the heat shock-induced protein HSP104 (delta hsp104), this protein cannot be involved in the accumulation of trehalose under these heat shock conditions. However, mutant delta hsp104, in contrast to the parental wild-type, was sensitive towards a 20 min incubation at 50 degrees C. Since this mutant also accumulated normal levels of trehalose, we conclude that HSP104 function, and not towards a 20 min incubation at 50 degrees C. Since this mutant also accumulated normal levels of trehalose, we conclude that HSP104 function, and not the accumulation of trehalose, protects S. cerevisiae from the damage caused by a 50 degrees C treatment.  相似文献   

7.
大肠杆菌\%otsA\%基因的克隆和表达   总被引:2,自引:0,他引:2  
用PCR方法扩增了1.5kb的otsA基因片段,将该片段连接到多拷贝克隆载体后转化otsBA缺失和otsA缺陷的大肠杆菌菌株,使转化株重新获得otsA基因功能。生长曲线表明转化株在高渗培养基中生长良好,薄层层析法(TLC)检测海藻糖实验说明转化株细胞诱导后合成海藻糖,otsA基因的克隆和表达为赋予转基因植物抗高渗、耐干旱能力提供了实验依据和材料。  相似文献   

8.
During a screening for novel microbial trehalose phosphorylase three Pichia strains were identified as producers of this particular enzyme that have not yet been described. To our knowledge, this is the first time that this enzyme activity has been shown in yeasts. Pichia fermentans formed trehalose phosphorylase when cultivated on a growth medium containing easily metabolizable sugers such as glucose. Addition of NaCl (0.4 M) to the medium increased the synthesis of the enzyme significantly. Production of trehalose phosphorylase was found to be growth-associated with a maximum of activity formed at the transition of the exponential to the stationary phase of growth. Trehalose phosphorylase catalyzes the phosphorolytic cleavage of trehalose, yielding glucose 1-phosphate (glucose-1-P) and glucose as products. In vitro the enzyme readily catalyzes the reverse reaction, the synthesis of trehalose from glucose and glucose-1-P. For this reaction, the enzyme of P. fermentans was found to utilize -glucose-1-P preferentially. A partially purified enzyme preparation showed a pH optimum of 6.3 for the synthesis of trehalose. The enzyme was found to be rather unstable; it was easily inactivated by dilution unless Ca2+ or Mn2+ were added. This instability is presumably caused by dissociation of the enzyme. In contrast to other yeasts, P. fermentans rapidly degraded intracellularly accumulated trehalose when the carbon source in the medium was depleted. Trehalose phosphorylase seems to be a key enzyme in the degradative pathway of trehalose in P. fermentans. Additional enzymes in this catabolic pathway of trehalose include phosphoglucomutase, glucose-6-phosphate dehydrogenase, and gluconolactonase.This contribution is part of the Ph.D. thesis of Ingrid Schick  相似文献   

9.
Yersinia pestis vaccine strain EV76 is a mutant of the virulent strain which has lost the pigmentation phenotype (Pgm+). This phenotype includes three characteristics: it absorbs pigments from agar media (Hms+), produces a siderophore yersiniabactin (Ybt+), and causes a lethal disease after subcutaneous inoculation of laboratory animals (Vir+). These characteristics are lost simultaneously after high frequency spontaneous deletion of 10 kB fragment of chromosomal DNA, termed the pgm locus. We compared the pgm locus-associated genetic and phenotypical properties of the vaccine strain with those of a typical Pgm- deletion mutant of a virulent strain. The results indicate that Pgm- phenotype of the vaccine strain results not from the deletion of the pgm locus, but from the insertion inactivation of the genes located in this locus. In contrast to the deletion mutant, the vaccine strain carries sequences detected by hybridization and PCR, which are complementary to the pgm locus genes. Moreover, the vaccine strain differed from the deletion mutant by a low level of Hms+ expression, a slower rate of cell death under iron-chelated conditions at 37 degrees C, "residual virulence" upon subcutaneous inoculation, and capacity to form revertants which restore the characteristics of Pgm+ phenotype after cell growth at 12 degrees C.  相似文献   

10.
The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.  相似文献   

11.
A humanized clone containing the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase (otsA/B) has been constructed. Using the Gateway Cloning System (Invitrogen, Inc.), the otsA/B genes have been placed under the control of the CMV promoter (pEXPcmv-otsA/B) or the CMV promoter and the tet operator (pEXP cmv TetO-otsA/B). The pEXPcmv-otsA/B clone has been introduced into 293H cells using LIPOFECTAMINE 2000 and the intracellular concentration of trehalose has been evaluated. The 293H cells accumulate 4-5 microg trehalose/mg dry weight and this concentration increases to 7-10 microg trehalose/mg dry weight if trehalose is included in the growth medium. The pEXPcmv TetO-otsA/B clone has been transfected into 293FTetR:Hyg cells which contain the tet repressor integrated into the genome. When these transfected cells are grown in the absence of tetracycline, no intracellular trehalose is detected. Inclusion of 0.3 microg/ml tetracycline in the growth medium results in the accumulation of 11-14 microg trehalose/mg dry weight, a value which increases to 19-20 microg trehalose/mg dry weight if trehalose is included in the growth medium. The data for the 293FTetR:Hyg cells indicate that intracellular trehalose accumulates in response to the addition of tetracycline. This system will allow us to manipulate the intracellular concentration of trehalose and to evaluate the desiccation tolerance of these cells as a function of intracellular trehalose concentration.  相似文献   

12.
Phosphoglucomutase Mutants of Escherichia coli K-12   总被引:16,自引:11,他引:5       下载免费PDF全文
Bacteria with strongly depressed phosphoglucomutase (EC 2.7.5.1) activity are found among the mutants of Escherichia coli which, when grown on maltose, accumulate sufficient amylose to be detectable by iodine staining. These pgm mutants grow poorly on galactose but also accumulate amylose on this carbon source. Growth on lactose does not produce high amylose but, instead, results in the induction of the enzymes of maltose metabolism, presumably by accumulation of maltose. These facts suggest that the catabolism of glucose-1-phosphate is strongly depressed in pgm mutants, although not completely abolished. Anabolism of glucose-1-phosphate is also strongly depressed, since amino acid- or glucose-grown pgm mutants are sensitive to phage C21, indicating a deficiency in the biosynthesis of uridine diphosphoglucose or uridine diphosphogalactose, or both. All pgm mutations isolated map at about 16 min on the genetic map, between purE and the gal operon.  相似文献   

13.
Natural abundance 13C nuclear magnetic resonance spectroscopy identified the disaccharide trehalose as the major organic osmolyte synthesized by Escherichia coli grown in continuous culture under nitrogen limitation in the presence of 0.5 M-NaCl. Trehalose accumulation was dependent on both the growth phase of the culture and the osmolality of the growth medium, but independent of the solute used to increase the osmolality as long as the solute was non-penetrant. The penetrant solute glycerol did not induce trehalose synthesis indicating that the loss of cell turgor rather than increasing medium osmolality per se was the mechanism stimulating trehalose synthesis. Under conditions of either carbon or nitrogen limitation osmoadaptation was distinctly biphasic. The initial response consisted of a rapid (within 30 min) accumulation of K+ and a concurrent synthesis of the amino acid glutamate; trehalose synthesis occurred during the second slower phase of osmoadaption. Chloramphenicol severely inhibited trehalose accumulation indicating that the enzyme(s) involved in trehalose synthesis were inducible.  相似文献   

14.
Abstract A temperature-sensitive mutant of Saccharomyces cerevisiae has been isolated which accumulates a large pool of trehalose-6-phosphate when shifted to temperatures above 34°C nonpermissive for growth. This indicates that its defect is in the second enzyme of trehalose biosynthesis, the hydrolase that converts trehalose-6-phosphate to trehalose. Trehalose is made continouosly when yeast is growing on high glucose or when it is starved for a nitrogen source, and accumulates as cells enter the stationary phase. Revertants of the mutant able to grow at 37°C arise spontaneously and no longer accumulate trehalose-6-phosphate at this temperature. Also the kinetics of trehalose-6-phosphate accumulation in the mutant following a 25–37°C shift resemble the kinetics of inhibition of RNA and protein synthesis. It is probable therefore that accumulation of high levels of this metabolic intermediate is inhibitory to growth.  相似文献   

15.
16.
The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Delta mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Delta mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39 degrees C and induced thermotolerance at 50 degrees C. The osmosensitive phenotype of the yeast tps1Delta mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla.  相似文献   

17.
18.
The adaptive significance of enzyme variation has been of central interest in population genetics. Yet, how natural selection operates on enzymes in the larger context of biochemical pathways has not been broadly explored. A basic expectation is that natural selection on metabolic phenotypes will target enzymes that control metabolic flux, but how adaptive variation is distributed among enzymes in metabolic networks is poorly understood. Here, we use population genetic methods to identify enzymes responding to adaptive selection in the pathways of central metabolism in Drosophila melanogaster and Drosophila simulans. We report polymorphism and divergence data for 17 genes that encode enzymes of 5 metabolic pathways that converge at glucose-6-phosphate (G6P). Deviations from neutral expectations were observed at five loci. Of the 10 genes that encode the enzymes of glycolysis, only aldolase (Ald) deviated from neutrality. The other 4 genes that were inconsistent with neutral evolution (glucose-6-phosphate dehydrogenase [G6pd]), phosphoglucomutase [Pgm], trehalose-6-phosphate synthetase [Tps1], and glucose-6phosphatase [G6pase] encode G6P branch point enzymes that catalyze reactions at the entry point to the pentose-phosphate, glycogenic, trehalose synthesis, and gluconeogenic pathways. We reconcile these results with population genetics theory and existing arguments on metabolic regulation and propose that the incidence of adaptive selection in this system is related to the distribution of flux control. The data suggest that adaptive evolution of G6P branch point enzymes may have special significance in metabolic adaptation.  相似文献   

19.
Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)相似文献   

20.
Trehalose is a disaccharide with potential applications in the biotechnology and food industries. We propose a method for industrial production of trehalose, based on improved strains of Corynebacterium glutamicum. This paper describes the heterologous expression of Escherichia coli trehalose-synthesizing enzymes trehalose-6-phosphate synthase (OtsA) and trehalose-6-phosphate phosphatase (OtsB) in C. glutamicum, as well as its impact on the trehalose biosynthetic rate and metabolic-flux distributions, during growth in a defined culture medium. The new recombinant strain showed a five- to sixfold increase in the activity of OtsAB pathway enzymes, compared to a control strain, as well as an almost fourfold increase in the trehalose excretion rate during the exponential growth phase and a twofold increase in the final titer of trehalose. The heterologous expression described resulted in a reduced specific glucose uptake rate and Krebs cycle flux, as well as reduced pentose pathway flux, a consequence of downregulated glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The results proved the suitability of using the heterologous expression of Ots proteins in C. glutamicum to increase the trehalose biosynthetic rate and yield and suggest critical points for further improvement of trehalose overproduction in C. glutamicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号