首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nine rare (biallelic) mutations and six short tandem repeats (STR) mapping to the nonrecombining portion of the Y chromosome were genotyped in 734 males from different geographical regions inhabited by the contemporary Armenian population. The analysis of molecular variance (AMOVA) showed that 48.9% of total STR genetic variation was explained by the differences between the haplogroups isolated based on biallelic polymorphism, whereas only 1.3% of genetic variation could be attributed to the differences between the geographic groups.  相似文献   

2.
Nine rare (biallelic) mutations and six short tandem repeats (STR) mapping to the nonrecombining portion of the Y chromosome were genotyped in 734 males from different geographical regions inhabited by the contemporary Armenian population. The analysis of molecular variance (AMOVA) showed that 48.9% of total STR genetic variation was explained by the differences between the haplogroups isolated based on biallelic polymorphism, whereas only 1.3% of genetic variation could be attributed to the differences between the geographic groups.  相似文献   

3.
黄代新  杨庆恩  尹慧  翟仙敦  杨荣芝 《遗传》2006,28(7):791-798
为了筛选在汉族群体中具有多态性的Y染色体双等位基因标记并获取其群体遗传学数据。采用片段长度差异等位基因特异性PCR和PAGE技术对武汉地区160名男性汉族无关个体的23个Y染色体双等位基因标记(M7,M9,M50,M88,M89,M95,M111,M117,M119,M121,M122,M134,M159,M164,M175,M214,LINE1,MSY2,RPS4Y711,SRY+465,IMS-JST164520,IMS-JST021354和IMS-JST003305)进行分型。除M50、M159和M164外,其余20个标记在武汉汉族群体中均具有遗传多态性,其基因多样性(GD)范围为0.0126~0.4855,共检出35种不同单体群组合(Hg1~35),单体群多样性(HD)为0.9471。表明20个Y染色体双等位基因标记组成的单体群具有较高的遗传多样性,在法医学应用和群体进化研究中具有较高的实用价值。  相似文献   

4.
We examined genetic variation on the nonrecombining portion of the Y chromosome (NRY) to investigate the paternal population structure of indigenous Siberian groups and to reconstruct the historical events leading to the peopling of Siberia. A set of 62 biallelic markers on the NRY were genotyped in 1432 males representing 18 Siberian populations, as well as nine populations from Central and East Asia and one from European Russia. A subset of these markers defines the 18 major NRY haplogroups (A-R) recently described by the Y Chromosome Consortium (YCC 2002). While only four of these 18 major NRY haplogroups accounted for -95% of Siberian Y-chromosome variation, native Siberian populations differed greatly in their haplogroup composition and exhibited the highest phiST value for any region of the world. When we divided our Siberian sample into four geographic regions versus five major linguistic groupings, analyses of molecular variance (AMOVA) indicated higher phiST and phiCT values for linguistic groups than for geographic groups. Mantel tests also supported the existence of NRY genetic patterns that were correlated with language, indicating that language affiliation might be a better predictor of the genetic affinity among Siberians than their present geographic position. The combined results, including those from a nested cladistic analysis, underscored the important role of directed dispersals, range expansions, and long-distance colonizations bound by common ethnic and linguistic affiliation in shaping the genetic landscape of Siberia. The Siberian pattern of reduced haplogroup diversity within populations combined with high levels of differentiation among populations may be a general feature characteristic of indigenous groups that have small effective population sizes and that have been isolated for long periods of time.  相似文献   

5.
We attempt to address the issue of genetic variation and the pattern of male gene flow among and between five Indian population groups of two different geographic and linguistic affiliations using Y-chromosome markers. We studied 221 males at three Y-chromosome biallelic loci and 184 males for the five Y-chromosome STRs. We observed 111 Y-chromosome STR haplotypes. An analysis of molecular variance (AMOVA) based on Y-chromosome STRs showed that the variation observed between the population groups belonging to two major regions (western and southwestern India) was 0.17%, which was significantly lower than the level of genetic variance among the five populations (0.59%) considered as a single group. Combined haplotype analysis of the five STRs and the biallelic locus 92R7 revealed minimal sharing of haplotypes among these five ethnic groups, irrespective of the similar origin of the linguistic and geographic affiliations; this minimal sharing indicates restricted male gene flow. As a consequence, most of the haplotypes were population specific. Network analysis showed that the haplotypes, which were shared between the populations, seem to have originated from different mutational pathways at different loci. Biallelic markers showed that all five ethnic groups have a similar ancestral origin despite their geographic and linguistic diversity.  相似文献   

6.
Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*). In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th) century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.  相似文献   

7.

Background

Polymorphic Y chromosome short tandem repeats (STRs) have been widely used in population genetic and evolutionary studies. Compared to di-, tri-, and tetranucleotide repeats, STRs with longer repeat units occur more rarely and are far less commonly used.

Principal Findings

In order to study the evolutionary dynamics of STRs according to repeat unit size, we analysed variation at 24 Y chromosome repeat loci: 1 tri-, 14 tetra-, 7 penta-, and 2 hexanucleotide loci. According to our results, penta- and hexanucleotide repeats have approximately two times lower repeat variance and diversity than tri- and tetranucleotide repeats, indicating that their mutation rate is about half of that of tri- and tetranucleotide repeats. Thus, STR markers with longer repeat units are more robust in distinguishing Y chromosome haplogroups and, in some cases, phylogenetic splits within established haplogroups.

Conclusions

Our findings suggest that Y chromosome STRs of increased repeat unit size have a lower rate of evolution, which has significant relevance in population genetic and evolutionary studies.  相似文献   

8.
Analyses of mtDNA and Y-chromosome variation were performed in a sample of Iraqis, a scarcely investigated population of the "Fertile Crescent." A total of 216 mtDNAs were screened for the diagnostic RFLP markers of the main Eurasian and African haplogroups. A subset of these samples, whose HVS-I sequences were previously obtained, was also examined by high-resolution restriction analysis. The Y-chromosome variation was investigated in 139 subjects by using 17 biallelic markers and the 49a,f/Taq I system. For both uniparental systems, the large majority of the haplogroups observed in the Iraqi population are those (H, J, T, and U for the mtDNA, and J(xM172) and J-M172 for the Y chromosome) considered to have originated in the Middle East and to have later spread all over Western Eurasia. However, about 9% of the mtDNAs and 30% of the Y-chromosomes most likely represent arrivals from distant geographic regions. The different proportion of long-range genetic input observed for the mtDNA and the Y chromosome appears to indicate that events of gene flow to this area might have involved mainly males rather than females.  相似文献   

9.
To investigate the diversity of Y chromosomes in the Iberian Peninsula and the North African population of Maghreb, we constructed superhaplotypes on the basis of 10 biallelic markers, 7 microsatellites, and 1 minisatellite located in the nonrecombining portion of the human Y chromosome. The analysis of extremely high MSY1 variability was performed by reducing the MVR-codes to modular structures. Y-STRs and MSY1 data provide information about the relationship between closely related populations such as those of Iberia. Analysis of biallelic markers allowed us to identify 7 of 12 haplogroups defined by those polymorphisms. The haplogroup background showed clear differences between Iberian populations and the North African one. The use of differently mutating Y-chromosome markers allowed us to infer different population events at different time scales: the Paleolithic background of the Iberian Peninsula, the Neolithic fingerprint on Y-chromosome lineages, and the Iron Age influence in the populations of Iberia. Implications of our results for the highly debated origin of Basques are also discussed.  相似文献   

10.
Zhuang, the largest ethnic minority population in China, is one of the descendant groups of the ancient Bai-Yue. Linguistically, Zhuang languages are grouped into northern and southern dialects. To characterize its genetic structure, 13 East Asian-specific Y-chromosome biallelic markers and 7 Y-chromosome short tandem repeat (STR) markers were used to infer the haplogroups of Zhuang populations. Our results showed that O*, O2a, and O1 are the predominant haplogroups in Zhuang. Frequency distribution and principal component analysis showed that Zhuang was closely related to groups of Bai-Yue origin and therefore was likely to be the descendant of Bai-Yue. The results of principal component analysis and hierarchical clustering analysis contradicted the linguistically derived north-south division. Interestingly, a west-east clinal trend of haplotype frequency changes was observed, which was supported by AMOVA analysis that showed that between-population variance of east-west division was larger than that of north-south division. O* network suggested that the Hongshuihe branch was the center of Zhuang. Our study suggests that there are three major components in Zhuang. The O* and O2a constituted the original component; later, O1 was brought into Zhuang, especially eastern Zhuang; and finally, northern Han population brought O3 into the Zhuang populations.  相似文献   

11.
壮族Y染色体分型及其内部遗传结构   总被引:3,自引:0,他引:3  
壮族是中国最大的少数民族,与东南亚的泰老族群关系密切,在东亚人群的遗传结构研究中地位非常特殊。本研究调查了壮族各个支系的Y染色体多样性,通过主成分分析、聚类分析和分子方差分析,揭示壮族的内部父系遗传结构。结果发现,壮族的主要Y染色体单倍群为O%*,O2a,O1。传统的对壮族按方言分为南北二组的分类方法在遗传上并没有依据,壮族支系体现出从东往西的梯度变化过程。这说明壮族的结构中有几个层次,最早的成分普遍出现在各个支系中,第二层是由东部来的百越核心成分,第三层是北方来的汉族成分。壮族内部遗传结构的分析将有助于对东亚人群的南来起源的研究。  相似文献   

12.
To better define the structure and origin of the Bulgarian paternal gene pool, we have examined the Y-chromosome variation in 808 Bulgarian males. The analysis was performed by high-resolution genotyping of biallelic markers and by analyzing the STR variation within the most informative haplogroups. We found that the Y-chromosome gene pool in modern Bulgarians is primarily represented by Western Eurasian haplogroups with ∼ 40% belonging to haplogroups E-V13 and I-M423, and 20% to R-M17. Haplogroups common in the Middle East (J and G) and in South Western Asia (R-L23*) occur at frequencies of 19% and 5%, respectively. Haplogroups C, N and Q, distinctive for Altaic and Central Asian Turkic-speaking populations, occur at the negligible frequency of only 1.5%. Principal Component analyses group Bulgarians with European populations, apart from Central Asian Turkic-speaking groups and South Western Asia populations. Within the country, the genetic variation is structured in Western, Central and Eastern Bulgaria indicating that the Balkan Mountains have been permeable to human movements. The lineage analysis provided the following interesting results: (i) R-L23* is present in Eastern Bulgaria since the post glacial period; (ii) haplogroup E-V13 has a Mesolithic age in Bulgaria from where it expanded after the arrival of farming; (iii) haplogroup J-M241 probably reflects the Neolithic westward expansion of farmers from the earliest sites along the Black Sea. On the whole, in light of the most recent historical studies, which indicate a substantial proto-Bulgarian input to the contemporary Bulgarian people, our data suggest that a common paternal ancestry between the proto-Bulgarians and the Altaic and Central Asian Turkic-speaking populations either did not exist or was negligible.  相似文献   

13.
The molecular basis of more than 25 genetic diseases has been described in Ashkenazi Jewish populations. Most of these diseases are characterized by one or two major founder mutations that are present in the Ashkenazi population at elevated frequencies. One explanation for this preponderance of recessive diseases is accentuated genetic drift resulting from a series of dispersals to and within Europe, endogamy, and/or recent rapid population growth. However, a clear picture of the manner in which neutral genetic variation has been affected by such a demographic history has not yet emerged. We have examined a set of 32 binary markers (single nucleotide polymorphisms; SNPs) and 10 microsatellites on the non-recombining portion of the Y chromosome (NRY) to investigate the ways in which patterns of variation differ between Ashkenazi Jewish and their non-Jewish host populations in Europe. This set of SNPs defines a total of 20 NRY haplogroups in these populations, at least four of which are likely to have been part of the ancestral Ashkenazi gene pool in the Near East, and at least three of which may have introgressed to some degree into Ashkenazi populations after their dispersal to Europe. It is striking that whereas Ashkenazi populations are genetically more diverse at both the SNP and STR level compared with their European non-Jewish counterparts, they have greatly reduced within-haplogroup STR variability, especially in those founder haplogroups that migrated from the Near East. This contrasting pattern of diversity in Ashkenazi populations is evidence for a reduction in male effective population size, possibly resulting from a series of founder events and high rates of endogamy within Europe. This reduced effective population size may explain the high incidence of founder disease mutations despite overall high levels of NRY diversity.Electronic Supplementary Material Supplementary material is available in the online version of this article at D.M. Behar and D. Garrigan contributed equally to this workElectronic database information: URLs for the data in this article are as follows:ARLEQUIN,  相似文献   

14.
Y-chromosome differentiation in Northwest Africa   总被引:2,自引:0,他引:2  
Variation of seven Y-chromosomal DNA polymorphisms, one microsatellite (DYS19), and six biallelic markers (DYS287, DYS271, SRY-2627, SRY-1532, 92R7, and M9), were studied in males from Northwest Africa. To evaluate the degree of differentiation in this region, males from neighboring areas such as the Iberian Peninsula and sub-Saharan Africa were also typed. The results show a large number of paternal lineages of Northwest African origin (over 75%), supporting a long-term population continuity in the area. When the analysis of molecular variance (AMOVA) was performed both on the microsatellite and biallelic marker combinations or haplogroups, a large degree of differentiation among areas was revealed. In spite of these geographic differences, some gene flow between areas was detected by the presence of haplogroups with other geographical origins.  相似文献   

15.
Eighteen binary polymorphisms and 16 multiallelic, short-tandem-repeat (STR) loci from the nonrecombining portion of the human Y chromosome were typed in 718 male subjects belonging to 12 ethnic groups of Pakistan. These identified 11 stable haplogroups and 503 combination binary marker/STR haplotypes. Haplogroup frequencies were generally similar to those in neighboring geographical areas, and the Pakistani populations speaking a language isolate (the Burushos), a Dravidian language (the Brahui), or a Sino-Tibetan language (the Balti) resembled the Indo-European-speaking majority. Nevertheless, median-joining networks of haplotypes revealed considerable substructuring of Y variation within Pakistan, with many populations showing distinct clusters of haplotypes. These patterns can be accounted for by a common pool of Y lineages, with substantial isolation between populations and drift in the smaller ones. Few comparative genetic or historical data are available for most populations, but the results can be compared with oral traditions about origins. The Y data support the well-established origin of the Parsis in Iran, the suggested descent of the Hazaras from Genghis Khan's army, and the origin of the Negroid Makrani in Africa, but do not support traditions of Tibetan, Syrian, Greek, or Jewish origins for other populations.  相似文献   

16.
Nonrecombinant portions of the genome, Y chromosome and mitochondrial DNA, are widely used for research on human population gene pools and reconstruction of their history. These systems allow the genetic dating of clusters of emerging haplotypes. The main method for age estimations is ρ statistics, which is an average number of mutations from founder haplotype to all modern-day haplotypes. A researcher can estimate the age of the cluster by multiplying this number by the mutation rate. The second method of estimation, ASD, is used for STR haplotypes of the Y chromosome and is based on the squared difference in the number of repeats. In addition to the methods of calculation, methods of Bayesian modeling assume a new significance. They have greater computational cost and complexity, but they allow obtaining an a posteriori distribution of the value of interest that is the most consistent with experimental data. The mutation rate must be known for both calculation methods and modeling methods. It can be determined either during the analysis of lineages or by providing calibration points based on populations with known formation time. These two approaches resulted in rate estimations for Y-chromosomal STR haplotypes with threefold difference. This contradiction was only recently refuted through the use of sequence data for the complete Y chromosome; “whole-genomic” rates of single nucleotide mutations obtained by both methods are mutually consistent and mark the area of application for different rates of STR markers. An issue even more crucial than that of the rates is correlation of the reconstructed history of the haplogroup (a cluster of haplotypes) and the history of the population. Although the need for distinguishing “lineage history” and “population history” arose in the earliest days of phylogeographic research, reconstructing the population history using genetic dating requires a number of methods and conditions. It is known that population history events leave distinct traces in the history of haplogroups only under certain demographic conditions. Direct identification of national history with the history of its occurring haplogroups is inappropriate and is avoided in population genetic studies, although because of its simplicity and attractiveness it is a constant temptation for researchers. An example of DNA genealogy, an amateur field that went beyond the borders of even citizen science and is consistently using the principle of equating haplogroup with lineage and population, which leads to absurd results (e.g., Eurasia as an origin of humankind), can serve as a warning against a simplified approach for interpretation of genetic dating results.  相似文献   

17.
We have determined the distribution of Y chromosomal haplotypes and haplogroups in population samples from one of the most important areas in north-eastern Hungary from many villages in the Bodrogköz. The Bodrogköz region was chosen due to its isolated nature, because this area was a moorland encircled by the Tisza, Bodrog, and Latorca Rivers and inhabitants of this part of Hungary escaped from both Tatar and Ottoman invasions, which decimated the post-Hungarian Conquest populations in many parts of the country. Furthermore, in the first half of the tenth century, this region served as the Palatial Centre and burial grounds of the Hungarian tribes. It has thus been assumed that the present population in this area is likely to be more similar to the population that lived in the Conquest period. We analysed male-specific markers, 23 Y-STRs and more than 30 Y-SNPs, that reflect the past and recent genetic history. We found that the general haplogroup distribution of the samples showed high genetic similarity to non-Bodrogköz Hungarians and neighbouring populations, despite its sheltered location and historical record. We were able to classify the Y-chromosomal haplogroups into four large groups based on STR mutation events: pre-Roman/Roman ancient lineage, Finno-Ugric speakers arriving into the Carpathian Basin, Migration period admixture, and post-Hungarian Conquest admixture. It is clear that a significantly larger database with deep haplogroup resolution, including ancient DNA data, is required to strengthen this research.  相似文献   

18.
The variation of 18 Alu polymorphisms and 3 linked STRs was determined in 1,831 individuals from 15 Mediterranean populations to analyze the relationships between human groups in this geographical region and provide a complementary perspective to information from studies based on uniparental markers. Patterns of population diversity revealed by the two kinds of markers examined were different from one another, likely in relation to their different mutation rates. Therefore, while the Alu biallelic variation underlies general heterogeneity throughout the whole Mediterranean region, the combined use of Alu and STR points to a considerable genetic differentiation between the two Mediterranean shores, presumably strengthened by a considerable sub‐Saharan African genetic contribution in North Africa (around 13% calculated from Alu markers). Gene flow analysis confirms the permeability of the Sahara to human passage along with the existence of trans‐Mediterranean interchanges. Two specific Alu/STR combinations—CD4 110(?) and DM 107(?)—detected in all North African samples, the Iberian Peninsula, Greece, Turkey, and some Mediterranean islands suggest an ancient genetic background of current Mediterranean peoples. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift.  相似文献   

20.
We analyzed mitochondrial DNA (mtDNA), Y‐chromosome single nucleotide polymorphisms (Y‐SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000‐year‐old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups. This is the first genetic evidence that a male of distinctive Indo‐European lineages (R1a1) was present in the Xiongnu of Mongolia. This might indicate an Indo‐European migration into Northeast Asia 2,000 years ago. Other specimens are a female with mtDNA haplogroup D4 and a male with Y‐SNP haplogroup C3 and mtDNA haplogroup D4. Those haplogroups are common in Northeast Asia. There was no close kinship among them. The genetic evidence of U2e1 and R1a1 may help to clarify the migration patterns of Indo‐Europeans and ancient East‐West contacts of the Xiongnu Empire. Artifacts in the tombs suggested that the Xiongnu had a system of the social stratification. The West Eurasian male might show the racial tolerance of the Xiongnu Empire and some insight into the Xiongnu society. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号