首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The epidermal growth factor receptor (EGFr) regulates many cellular functions, such as proliferation, apoptosis, and ion transport. Our aim was to investigate whether long term treatment with interferon-γ (IFN-γ) modulates EGF activation of downstream signaling pathways in intestinal epithelial cells and if this contributes to dysregulation of epithelial ion transport in inflammation. Polarized monolayers of T(84) and HT29/cl.19A colonocytes were preincubated with IFN-γ prior to stimulation with EGF. Basolateral potassium transport was studied in Ussing chambers. We also studied inflamed colonic mucosae from C57BL/6 mice treated with dextran sulfate sodium or mdr1a knock-out mice and controls. IFN-γ increased intestinal epithelial EGFr expression without increasing its phosphorylation. Conversely, IFN-γ caused a significant decrease in EGF-stimulated phosphorylation of specific EGFr tyrosine residues and activation of ERK but not Akt-1. In IFNγ-pretreated cells, the inhibitory effect of EGF on carbachol-stimulated K(+) channel activity was lost. In inflamed colonic tissues, EGFr expression was significantly increased, whereas ERK phosphorylation was reduced. Thus, although it up-regulates EGFr expression, IFN-γ causes defective EGFr activation in colonic epithelial cells via reduced phosphorylation of specific EGFr tyrosine residues. This probably accounts for altered downstream signaling consequences. These observations were corroborated in the setting of colitis. IFN-γ also abrogates the ability of EGF to inhibit carbachol-stimulated basolateral K(+) currents. Our data suggest that, in the setting of inflammation, the biological effect of EGF, including the inhibitory effect of EGF on Ca(2+)-dependent ion transport, is altered, perhaps contributing to diarrheal and other symptoms in vivo.  相似文献   

3.
Mucosal epithelial cell layers are constantly exposed to a complex resident microflora. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by pathogen binding. This report describes the regulation and function of DMBT1 in intestinal epithelial cells, which form the primary immunological barrier for invading pathogens. We report that intestinal epithelial cells up-regulate DMBT1 upon proinflammatory stimuli (e.g., TNF-alpha, LPS). We demonstrate that DMBT1 is a target gene for the intracellular pathogen receptor NOD2 via NF-kappaB activation. DMBT1 is strongly up-regulated in the inflamed intestinal mucosa of Crohn's disease patients with wild-type, but not with mutant NOD2. We show that DMBT1 inhibits cytoinvasion of Salmonella enterica and LPS- and muramyl dipeptide-induced NF-kappaB activation and cytokine secretion in vitro. Thus, DMBT1 may play an important role in the first line of mucosal defense conferring immune exclusion of bacterial cell wall components. Dysregulated intestinal DMBT1 expression due to mutations in the NOD2/CARD15 gene may be part of the complex pathophysiology of barrier dysfunction in Crohn's disease.  相似文献   

4.
Interferon gamma (IFN-γ), is a cytokine, which is an important regulator of host defense system by mediating both innate and adaptive immune responses. IFN-γ signaling is primarily associated with inflammation and cell-mediated immune responses. IFN-γ is also represented as antitumor cytokine which facilitates immunosurveillance in tumor cells. In addition, IFN-γ mediated signaling also elicits pro-tumorigenic transformations and promotes tumor progression. Impact of IFN-γ signaling in mammalian cells has been widely studied which indicate that IFN-γ orchestrates distinct cellular functions including immunomodulation, leukocyte trafficking, apoptosis, anti-microbial, and both anti- and pro-tumorigenic role. However, a detailed network of IFN-γ signaling pathway is currently lacking. Therefore, we systematically curated the literature information pertaining to IFN-γ signaling and develop a comprehensive signaling network to facilitate better understanding of IFN-γ mediated signaling. A total of 124 proteins were catalogued that were experimentally proven to be involved in IFN-γ signaling cascade. These 124 proteins were found to participate in 81 protein-protein interactions, 94 post-translational modifications, 20 translocation events, 54 activation/inhibiton reactions. Further, 236 differential expressed genes were also documented in IFN-γ mediated signaling. IFN-γ signaling pathway is made freely available to scientific audience through NetPath at (http://www.netpath.org/pathways?path_id=NetPath_32). We believe that documentation of reactions pertaining to IFN-γ signaling and development of pathway map will facilitate further research in IFN-γ associated human diseases including cancer.  相似文献   

5.
Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that conjugates to its target proteins to modify them through ISGylation, but the relevance of ISG15 expression and its effects have been not completely defined. Herein, we examined the interplay between ISG15/ISGylation and the interferon-gamma (IFN-γ) signaling pathway in mammary tumors and compared it with that in normal mammary tissues. Our results indicated that mammary tumors had higher levels of ISG15 mRNA and ISG15 protein than the adjacent normal mammary tissue. Furthermore, the expression of IFN-γ signaling components was altered in breast cancer. Interestingly, IFN-γ treatment induced morphological changes in MCF-7 and MDA-MB-231 breast cancer cell lines due to cytoskeletal reorganization. This cellular process seems to be related to the increase in ISGylation of cytoplasmic IQ Motif Containing GTPase Activating Protein 1 (IQGAP1). Interactome analysis also indicated that IFN-γ signaling and the ISGylation system are associated with several proteins implicated in cytoskeletal remodeling, including IQGAP1. Thus, ISG15 may present a potential biomarker for breast cancer, and IFN-γ signaling and protein ISGylation may participate in the regulation of the cytoskeleton in breast cancer cells.  相似文献   

6.
Staphylococcus aureus infection elicits through its mature lipoproteins an innate immune response by TLR2-MyD88 signaling, which improves bacterial clearing and disease outcome. The role of dendritic cells (DCs) and T cells in this immune activation and the function of T and B cells in defense against S. aureus infection remain unclear. Therefore, we first evaluated DC and T cell activation after infection with S. aureus wild type (WT) and its isogenic mutant, which is deficient in lipoprotein maturation, in vitro. Lipoproteins in viable S. aureus contributed via TLR2-MyD88 to activation of DCs, which promoted the release of IFN-γ and IL-17 in CD4(+) T cells. This strong effect was independent of superantigens and MHC class II. We next evaluated the function of T cells and their cytokines IFN-γ and IL-17 in infection in vivo. Six days after systemic murine infection IFN-γ, IL-17, and IL-10 production in total spleen cells were MyD88-dependent and their levels increased until day 21. The comparison of CD3(-/-), Rag2(-/-), and C57BL/6 mice after infection revealed that IFN-γ and IL-17 originated from T cells and IL-10 originated from innate immune cells. Furthermore, vaccination of mice to activate T and B cells did not improve eradication of S. aureus from organs. In conclusion, S. aureus enhances DC activation via TLR2-MyD88 and thereby promotes T(H)1 and T(H)17 cell differentiation. However, neither T cells and their MyD88-regulated products, IFN-γ and IL-17, nor B cells affected bacterial clearing from organs and disease outcome.  相似文献   

7.
8.
9.
10.
Neurokinin A (NKA), a neurotransmitter distributed in the central and peripheral nervous system, strictly controls vital responses, such as airway contraction, by intracellular signaling through neurokinin-2 receptor (NK2R). However, the function of NKA-NK2R signaling on involvement in immune responses is less-well defined. We demonstrate that NK2R-mediated neuropeptide signaling activates dendritic cell (DC)-mediated type 1 immune responses. IFN-γ stimulation significantly induced NK2R mRNA and remarkably enhanced surface protein expression levels of bone marrow-derived DCs. In addition, the DC-mediated NKA production level was significantly elevated after IFN-γ stimulation in vivo and in vitro. We found that NKA treatment induced type 1 IFN mRNA expressions in DCs. Transduction of NK2R into DCs augmented the expression level of surface MHC class II and promoted Ag-specific IL-2 production by CD4(+) T cells after NKA stimulation. Furthermore, blockade of NK2R by an antagonist significantly suppressed IFN-γ production by both CD4(+) T and CD8(+) T cells stimulated with the Ag-loaded DCs. Finally, we confirmed that stimulation with IFN-γ or TLR3 ligand (polyinosinic-polycytidylic acid) significantly induced both NK2R mRNA and surface protein expression of human PBMC-derived DCs, as well as enhanced human TAC1 mRNA, which encodes NKA and Substance P. Thus, these findings indicate that NK2R-dependent neuropeptide signaling regulates Ag-specific T cell responses via activation of DC function, suggesting that the NKA-NK2R cascade would be a promising target in chronic inflammation caused by excessive type 1-dominant immunity.  相似文献   

11.
B-cells can contribute to the pathogenesis of autoimmune diseases not only through auto-antibody secretion but also via cytokine production. Therapeutic depletion of B-cells influences the functions and maintenance of various T-cell subsets. The mechanisms governing the functional heterogeneity of B-cell subsets as cytokine-producing cells are poorly understood. B-cells can differentiate into two functionally polarized effectors, one (B-effector-1-cells) producing a Th-1-like cytokine pattern and the other (Be2) producing a Th-2-like pattern. IL-12 and IFN-γ play a key role in Be1 polarization, but the initial trigger of Be1 commitment is unclear. Type-I-interferons are produced early in the immune response and prime several processes involved in innate and adaptive responses. Here, we report that IFN-α triggers a signaling cascade in resting human naive B-cells, involving STAT4 and T-bet, two key IFN-γ gene imprinting factors. IFN-α primed naive B-cells for IFN-γ production and increased IFN-γ gene responsiveness to IL-12. IFN-γ continues this polarization by re-inducing T-bet and up-regulating IL-12Rβ2 expression. IFN-α and IFN-γ therefore pave the way for the action of IL-12. These results point to a coordinated action of IFN-α, IFN-γ and IL-12 in Be1 polarization of naive B-cells, and may provide new insights into the mechanisms by which type-I-interferons favor autoimmunity.  相似文献   

12.
In early gestation, trophoblastic cells of porcine preimplanting conceptuses transiently and massively secrete two distinct interferons (IFNs), one of which is IFN-γ. In order to localize possible cellular target(s) for this IFN-γ, the expression of the porcine IFN-γ receptor and its developmental regulation have been investigated on the maternal endometrium and on the embryonic tissues. A cDNA encoding the porcine IFN-γ binding-chain (pIFNGR1) was isolated. When expressed in COS-7 cells, it displayed a specific binding to radiolabelled pIFN-γ and was shown to be a glycosylated membrane protein with an apparent molecular mass of 92 kDa. Porcine IFNGR1 mRNA was detected by RT-PCR not only in uterine epithelial cells but also in embryonic tissues from at least as early as day 10 of gestation. Moreover, membrane expression of the pIFN-γ receptor quantified by binding and crosslinking of 32P-pIFN-γ was demonstrated in uterine epithelium and in the trophoblast. In the trophoblast, expression of the receptor was found to be developmentally regulated: although expression was weak on days 12 and 15 of gestation, it reached a level similar to that found on some IFN-γ–sensitive cells on day 16. This study shows that maternal endometrium is not the only possible target for trophoblastic IFN-γ: the induction of pIFN-γ receptor expression in the trophoblast around day 16 of gestation could suggest the appearance of responsiveness to pIFN-γ in this implanted tissue and therefore a possible delayed autocrine effect of trophoblastic pIFN-γ. Mol. Reprod. Dev. 51:225–234, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

13.
《Cellular signalling》2014,26(12):2674-2682
Interferon (IFN)-γ and tumor necrosis factor (TNF)-α cause chronic inflammation of the intestine leading to progression of inflammatory bowel disease (IBD), which is manifested through rapid apoptosis of the intestinal epithelial cells (iECs). Here, we show inhibition of IFN-γ and TNF-α-induced apoptosis of INT-407 cells by porin, a microbe-associated molecular pattern (MAMP) with affinity for toll-like receptor (TLR)2 and commonly present in Gram-negative bacteria. Proinflammatory cytokines induce apoptosis by activation of caspase 8 that triggers caspase 9 through Bax finally leading to activation of caspase 3, the executioner caspase. Interestingly, while IFN-γ and TNF-α promotes Bax expression, in contrast porin up-regulates anti-apoptotic Bcl-xL resulting in iEC survivability. We show elevated expression of TLR2 is a key requisite for IFN-γ and TNF-α mediated caspase 8 up-regulation that contributes to apoptosis of iECs. Down-regulation of TLR2 expression is central for checking apoptosis which is achieved by elevated level of toll-interacting protein (TOLLIP) in presence of porin. Attempts to limit IBD is in progress with anti-IFN-γ and anti-TNF-α Abs or use of IL-10. Although probiotic bacterial proteins have shown to successfully reduce IFN-γ and TNF-α mediated apoptosis, the exact mechanism of their action has remained elusive. This study identifies the underlying sequential events of transient TLR2 stimulation followed by its blocking in response to the bacterial outer membrane protein, which advocates intervention at TLR-juncture is crucial for controlling IBD.  相似文献   

14.
15.
IL-4 and IFN-γ are prototypical Th2 and Th1 cytokines, respectively. They reciprocally regulate a number of genes involved in Th1 vs Th2 immune balance. Using DD-PCR analysis, adenine nucleotide translocase (ANT) 3, an enzyme which exchanges ATP and ADP through mitochondrial membrane, has been identified as a novel target counter-regulated by IL-4 and IFN-γ. We have observed that IL-4 and IFN-γ each up-regulates ANT3 in T cells both at mRNA and protein levels, while cotreatment of IL-4 and IFN-γ counter-regulates ANT3 expression. In contrast, other isoforms of ANT were not affected by IL-4 or IFN-γ. Emplyoing transfection and overexpression of STAT6 and STAT1 in STAT-deficient cells, we demonstrate that induction of ANT3 by IL-4 and IFN-γ proceeds via pathways involving STAT6 and STAT1, respectively. Furthermore, regulation of ANT3 expression by IL-4 and IFN-γ correlated with the modulation T cell survival by these cytokines from dex-induced apoptosis. Considering the critical role of mitochondrial ANTs in energy metabolism and apoptosis, ANT3 regulation by IL-4 and IFN-γ may have a functional implication in cytokine-mediated T cell survival.  相似文献   

16.
17.
Leptin is a hormone synthesized by adipocytes and other tissues, including the placenta, and it regulates food intake and energy expenditure, reproductive and immune functions. To investigate the role of leptin in neonatal immunity, we measured serum leptin and cytokine (IFN-γ, TNF-α, IL-2, IL-4, IL-10, IL-12) levels in the cord blood (cb) of 510 healthy neonates, 14 small for gestational age (SGA), 312 appropriately grown for gestational age (AGA) and 184 large for gestational age (LGA). Median serum leptin concentration in the whole sample was 11 ng/ml. In 11.2% neonates (1 SGA, 32 AGA, 24 LGA), leptin levels were >90th percentile (median 39 ng/ml). In 33.3% of those (3.72% of total sample) with the highest leptin levels (median 46 ng/ml), significantly elevated levels of serum IFN-γ were also found (mean 27.11 pg/ml, range 17.5-38.5 pg/ml). In neonates with leptin levels ~50th percentile (median 12 ng/ml) or <10th percentile (median 1 ng/ml), serum IFN-γ levels were negligible. All other cytokines measured, were < the assays' detection limits. To investigate whether leptin can independently influence cytokine gene expression by cb T-cells and monocytes (Mc), we cultured cb T-cells or Mc, isolated from randomly selected AGA neonates or adult peripheral blood, with leptin. This resulted in upregulation of IL-2, IFN-γ and IL-4 gene expression in cb and adult T-cells and IL-10 expression mainly in cb-Mc. Significantly higher expression of IFN-γ occurred in female cb-T-cells cultured with leptin, compared with male cb-T-cells. In conclusion, the concurrent presence of high concentrations in both leptin and IFN-γ in cb of healthy infants, and leptin's ability to directly upregulate cytokine gene expression in cb T and Mc cells, indicate that abnormally high leptin levels can independently influence the immune system of healthy newborns, and may mediate gender differences in the development of a Th1 polarized immune response.  相似文献   

18.
19.
Interferon (IFN)-γ is the uppermost cytokine implicated in anti-tumor immunity. With its cytostatic, pro-apoptotic and immune-provoking effects, IFN-γ plays a central role in the recognition and elimination of transformed cells. Considering well-characterized anti-tumor effects of this cytokine, many clinical trials and immunotherapy approaches have been designed to reinforce IFN-γ-mediated immunity for different types of cancer. However, the outcomes were not satisfactory and leaded to questioning of alternative actions of IFN-γ. Many regulatory pathways can be induced by IFN-γ to protect the normal tissues from collateral damage and to facilitate the re-establishment of homeostasis. Nevertheless, malignant cells can take the advantage of IFN-γ as an inducer of mediators inhibiting anti-tumor immune reactions. In addition, under the influence of tumor-derived factors, certain types of immune cells are also licensed by IFN-γ to perform regulatory actions. This review focuses on the immune modulatory functions of IFN-γ in cancer as an alternative story to be told.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号