首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
A cDNA, ERD1, isolated from one-hour-dehydrated plants of Arabidopsis thaliana L. encodes a putative protein that is similar to the regulatory ATPase subunit (ClpA) of the Clp protease and contains a putative chloroplast-targeting transit-peptide at the N-terminus. A chimeric gene with the putative plastid-targeting sequence of the erd1 gene fused to the synthetic green-fluorescent protein (sGFP) gene was constructed and introduced into Arabidopsis protoplasts. The N-terminal region of the ERD1 protein directed the sGFP protein into the plastids of the protoplasts, and functioned as a transit peptide. Northern blot analysis indicated that expression of the erd1 gene was induced not only by water stress, such as dehydration and high salinity, but also by natural senescence and dark-induced etiolation. The erd1 gene was not strongly induced by exogenous abscisic acid. A chimeric gene with the 0.9 kb promoter region of the erd1 gene fused to the β-glucuronidase (GUS) reporter gene was constructed, and tobacco plants transformed with the construct. The GUS reporter gene driven by the erd1 promoter was induced by dehydration and high salt stress at significant levels in the transgenic plants. The GUS gene was strongly expressed in older leaves without dehydration, and was induced by dark-induced etiolation. Furthermore, GUS activity was reduced by cytokinin treatment during dark-induced etiolation. These results indicate that expression of the erd1 gene is developmentally up-regulated by senescence as well as by water stress.  相似文献   

6.
7.
8.
A cDNA clone, named XF41, that encodes an RNA-binding protein was isolated from Arabidopsis thaliana. The deduced protein, named AtRBP1, contains two conserved consensus sequence-type RNA-binding domains (CS-RBDs) in the N-terminal half, a putative PY motif (a target of a WW domain) in the center, and uncharacterized C-terminal domain. A binding assay demonstrated that the AtRBP1 can bind to single-stranded nucleic acids in vitro. Analysis of localization of the GUS activity of transgenic Arabidopsis thaliana plants that have the chimeric gene containing the upstream sequence of the AtRBP1 gene and GUS gene demonstrated that the AtRBP1 gene is expressed in meristematic tissues such as the vegetative shoot apex and root tips, developing organs such as floral buds and pistils of young flowers, abscission layers of immature siliques and junctions of pedicels. Considering the specificity of the expression, AtRBP1 may be required in the progress of cell proliferation.  相似文献   

9.
10.
11.
We have isolated and characterized the genomic clone CHN50 corresponding to tobacco basic endochitinase (E.C.3.2.1.14). DNA sequence and blotting analysis reveal that the coding sequence of the gene present on CHN50 is identical to that of the cDNA clone pCHN50 and, moreover, the CHN50 gene has its origin in the progenitor of tobacco, Nicotiana sylvestris. Tobacco basic chitinases are encoded by a small gene family that consists of at least two members, the CHN50 gene and a closely related CHN17 gene which was characterized previously. By northern blot analysis, it is shown that the CHN50 gene is highly expressed in suspension-cultured tobacco cells and the mRNA accumulates at late logarithmic growth phase. To identify cis-DNA elements involved in the expression of the CHN50 gene in suspensioncultured cells, the chimeric gene consisting of 1.1 kb CHN50 5 upstream region fused to the coding sequence of -glucuronidase (GUS) was introduced by electroporation into protoplasts isolated from suspension-cultured tobacco cells. Transient GUS activity was found to be dependent on the growth phase of the cultured cells, from which protoplasts had been prepared. Functional analysis of 5 deletions suggests that the distal region between -788 and -345 contains sequences that potentiate the high-level expression in tobacco protoplasts and the region (-68 to -47) proximal to the TATA box functions as a putative silencer.  相似文献   

12.
13.
14.
15.
Development of root nodules, specifically induction of cortical cell division for nodule initiation, requires expression of specific genes in the host and microsymbiont. A full-length cDNA clone and the corresponding genomic clone encoding a MAP (mitogen-activated protein) kinase homolog were isolated from alfalfa (Medicago sativa). The genomic clone, TDY1, encodes a 68.9-kDa protein with 47.7% identity to MMK4, a previously characterized MAP kinase homolog from alfalfa. TDY1 is unique among the known plant MAP kinases, primarily due to a 230 amino acid C-terminal domain. The putative activation motif, Thr-Asp-Tyr (TDY), also differs from the previously reported Thr-Glu-Tyr (TEY) motif in plant MAP kinases. TDY1 messages were found predominantly in root nodules, roots, and root tips. Transgenic alfalfa and Medicago truncatula containing a chimeric gene consisting of 1.8 kbp of 5' flanking sequence of the TDY1 gene fused to the beta-glucuronidase (GUS) coding sequence exhibited GUS expression primarily in the nodule parenchyma, meristem, and vascular bundles, root tips, and root vascular bundles. Stem internodes stained intensely in cortical parenchyma, cambial cells, and primary xylem. GUS activity was observed in leaf mesophyll surrounding areas of mechanical wounding and pathogen invasion. The promoter was also active in root tips and apical meristems of transgenic tobacco. Expression patterns suggest a possible role for TDY1 in initiation and development of nodules and roots, and in localized responses to wounding.  相似文献   

16.
17.
The cDNA clone RXF12, which encodes a xylanase (EC 3.2.1.8), was isolated from Arabidopsis thaliana. The C-terminal half of the amino acid sequence of the deduced protein, named AtXyn1, showed similarity with the catalytic domain of barley xylanase X-1. The N-terminal half of AtXyn1 also contained three regions with sequences similar to cellulose-binding domains (CBDs). A xylanase assay revealed that transgenic A. thaliana plants expressing exogenous AtXyn1 fused with enhanced green fluorescent protein (EGFP) possessed approximately twice as much xylanase activity as wild-type plants. Observation by fluorescence microscopy of transgenic A. thaliana plants expressing a fusion protein of AtXyn1 and EGFP suggested that AtXyn1 is a cell wall protein. Analysis of the localization of beta-glucuronidase (GUS) activity in transgenic A. thaliana plants containing a chimeric gene with the upstream sequence of the AtXyn1 gene and the GUS gene demonstrated that the AtXyn1 gene is predominantly expressed in vascular bundles, but not in vessel cells. These data suggest that AtXyn1 is involved in the secondary cell wall metabolism of vascular bundle cells. A database search revealed that four putative xylanase genes exist in the A. thaliana genome, besides the AtXyn1 gene. Of these, two also contain several regions with sequences similar to CBDs in their N-terminal regions. Comparison of the amino acid sequences of the five xylanases suggests a possible process for their molecular evolution.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号