首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ribosort is a computer package for convenient editing of automated ribosomal intergenic spacer analysis (ARISA) and terminal restriction fragment length polymorphism (TRFLP) data. It is designed to eliminate the labourious task of manually classifying community fingerprints in microbial ecology studies. This program automatically assigns detected fragments and their respective relative abundances to appropriate ribotypes. It permits simultaneous sorting of multiple profiles and facilitates direct workflow from TRFLP and ARISA output through to community analyses. ribosort also provides several options to merge repeat profiles of a sample into a single composite profile. By creating a 'ribotypes by samples' matrix ready for statistical analyses, use of the package saves time and simplifies the preparation of DNA fingerprint data sets for statistical analysis. In addition, ribosort performs exploratory analysis on the data by creating multidimensional scaling plots that compare the similarity of sample profiles using the statistical software r.  相似文献   

2.
We present an interlaboratory comparison between full-length 16S rRNA gene sequence analysis and terminal restriction fragment length polymorphism (TRFLP) for microbial communities hosted on seafloor basaltic lavas, with the goal of evaluating how similarly these two different DNA-based methods used in two independent labs would estimate the microbial diversity of the same basalt samples. Two samples were selected for these analyses based on differences detected in the overall levels of microbial diversity between them. Richness estimators indicate that TRFLP analysis significantly underestimates the richness of the relatively high-diversity seafloor basalt microbial community: at least 50% of species from the high-diversity site are missed by TRFLP. However, both methods reveal similar dominant species from the samples, and they predict similar levels of relative diversity between the two samples. Importantly, these results suggest that DNA-extraction or PCR-related bias between the two laboratories is minimal. We conclude that TRFLP may be useful for relative comparisons of diversity between basalt samples, for identifying dominant species, and for estimating the richness and evenness of low-diversity, skewed populations of seafloor basalt microbial communities, but that TRFLP may miss a majority of species in relatively highly diverse samples.  相似文献   

3.
Premature yeast flocculation (PYF) is a sporadic fermentation problem in the brewing industry that results in incomplete yeast utilization of fermentable sugars in wort. Culture-independent, PCR-based fingerprinting techniques were applied in this study to identify the associations between the occurrence of the PYF problem during brewery fermentation with barley malt-associated microbial communities (both bacteria and fungi). Striking differences in the microbial DNA fingerprint patterns for fungi between PYF positive (PYF +ve) and negative (PYF ?ve) barley malts were observed using the terminal restriction fragment length polymorphism (TRFLP) technique. The presence of terminal restriction fragments (TRFs) of 360–460 bp size range, for fungal HaeIII restriction enzyme-derived TRFLP profiles appeared to vary substantially between PYF +ve and PYF ?ve samples. The source of the barley malt did not influence the fungal taxa implicated in PYF. TRFLP analysis indicates bacterial taxa are unlikely to be important in causing PYF. Virtual digestion of fungal sequences tentatively linked HaeIII TRFs in the 360–460 bp size range to a diverse range of yeast/yeast-like species. Findings from this study suggest that direct monitoring of barley malt samples using molecular methods could potentially be an efficient and viable alternative for monitoring PYF during brewery fermentations.  相似文献   

4.
Many bacteria, particularly actinomycetes, are known to produce secondary metabolites synthesized by polyketide synthases (PKS). Bacterial polyketides are a particularly rich source of bioactive molecules, many of which are of potential pharmaceutical relevance. To directly access PKS gene diversity from soil, we developed degenerate PCR primers for actinomycete type II KS(alpha) (ketosynthase) genes. Twenty-one soil samples were collected from diverse sources in New Jersey, and their bacterial communities were compared by terminal restriction fragment length polymorphism (TRFLP) analysis of PCR products generated using bacterial 16S rRNA gene primers (27F and 1525R) as well as an actinomycete-specific forward primer. The distribution of actinomycetes was highly variable but correlated with the overall bacterial species composition as determined by TRFLP. Two samples were identified to contain a particularly rich and unique actinomycete community based on their TRFLP patterns. The same samples also contained the greatest diversity of KS(alpha) genes as determined by TRFLP analysis of KS(alpha) PCR products. KS(alpha) PCR products from these and three additional samples with interesting TRFLP pattern were cloned, and seven novel clades of KS(alpha) genes were identified. Greatest sequence diversity was observed in a sample containing a moderate number of peaks in its KS(alpha) TRFLP. The nucleotide sequences were between 74 and 81% identical to known sequences in GenBank. One cluster of sequences was most similar to the KS(alpha) involved in ardacin (glycopeptide antibiotic) production by Kibdelosporangium aridum. The remaining sequences showed greatest similarity to the KS(alpha) genes in pathways producing the angucycline-derived antibiotics simocyclinone, pradimicin, and jasomycin.  相似文献   

5.
6.
Anaerobic sludge granules were obtained from laboratory-scale anaerobic bioreactors used to treat pharmaceutical-like (methanol-, acetone- and propanol-contaminated) wastewater under low-temperature conditions (15 degrees C). The microbial diversity and diversity changes of the sludge samples were ascertained by applying 16S rRNA gene cloning and terminal restriction fragment length polymorphism (TRFLP) analyses, respectively, and using sludge samples from the inoculum, throughout and at the conclusion of the bioreactor trial. Data from genetic fingerprinting correlated well with those from physiological activity assays of the reactor biomass. Specifically, for example, TRFLP profiles indicated the dominance of hydrogenotrophic methanogens within the archaeal community, thus supporting the findings of specific methanogenic activity measurements. TRFLP data supported the hypothesis that the deviation between the replicated reactors, in terms of treatment efficiency, was associated with succession within the microbial communities present, and indicated that community development was linked to both operating temperature and wastewater composition. Fluorescence in situ hybridization (FISH) was also applied, to quantitatively assess the abundance of selected microbial groups, and revealed the underestimation of the abundance Methanosarcina by gene cloning analysis and demonstrated the spatial arrangement of these organisms within the architecture of the low-temperature solvent-degrading anaerobic biofilms.  相似文献   

7.
Identification of Unique Type II Polyketide Synthase Genes in Soil   总被引:3,自引:2,他引:1       下载免费PDF全文
Many bacteria, particularly actinomycetes, are known to produce secondary metabolites synthesized by polyketide synthases (PKS). Bacterial polyketides are a particularly rich source of bioactive molecules, many of which are of potential pharmaceutical relevance. To directly access PKS gene diversity from soil, we developed degenerate PCR primers for actinomycete type II KSα (ketosynthase) genes. Twenty-one soil samples were collected from diverse sources in New Jersey, and their bacterial communities were compared by terminal restriction fragment length polymorphism (TRFLP) analysis of PCR products generated using bacterial 16S rRNA gene primers (27F and 1525R) as well as an actinomycete-specific forward primer. The distribution of actinomycetes was highly variable but correlated with the overall bacterial species composition as determined by TRFLP. Two samples were identified to contain a particularly rich and unique actinomycete community based on their TRFLP patterns. The same samples also contained the greatest diversity of KSα genes as determined by TRFLP analysis of KSα PCR products. KSα PCR products from these and three additional samples with interesting TRFLP pattern were cloned, and seven novel clades of KSα genes were identified. Greatest sequence diversity was observed in a sample containing a moderate number of peaks in its KSα TRFLP. The nucleotide sequences were between 74 and 81% identical to known sequences in GenBank. One cluster of sequences was most similar to the KSα involved in ardacin (glycopeptide antibiotic) production by Kibdelosporangium aridum. The remaining sequences showed greatest similarity to the KSα genes in pathways producing the angucycline-derived antibiotics simocyclinone, pradimicin, and jasomycin.  相似文献   

8.
DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples.  相似文献   

9.
Soil is a highly heterogeneous matrix, which can contain thousands of different bacterial species per gram. Only a small component of this diversity (maybe <1%) is commonly captured using standard isolation techniques, although indications are that a larger proportion of the soil community is in fact culturable. Better isolation techniques yielding greater bacterial diversity would be of benefit for understanding the metabolic activity and capability of many soil microorganisms. We studied the response of soil bacterial communities to carbon source enrichment in small matrices by means of terminal restriction fragment length polymorphism (TRFLP) analysis. The community composition of replicate enrichments from soil displayed high variability, likely attributable to soil heterogeneity. An analysis of TRFLP data indicated that enrichment on structurally similar carbon sources selected for similar bacterial communities. The same analysis indicated that communities first enriched on glucose or benzoate and subsequently transferred into medium containing an alternate carbon source retained a distinct community signature induced by the carbon source used in the primary enrichment. Enrichment on leucine presented a selective challenge that was able to override the imprint left by primary enrichment on acetate. In a time series experiment community change was most rapid 18 hours after inoculation, corresponding to exponential growth. Community composition did not stabilize even 4 days after secondary enrichment. Four different soil types were enriched on four different carbon sources. TRFLP analysis indicated that in three out of four cases communities enriched on the same carbon source were more similar regardless of which soil type was used. Conversely, the garden soil samples yielded similar enrichment communities regardless of the enrichment carbon source. Our results indicate that in order to maximize the diversity of bacteria recovered from the environment, multiple enrichments should be performed using a chemically diverse set of carbon sources.  相似文献   

10.
The catalysts for many microbially mediated environmental processes such as the dechlorination of polychlorinated biphenyls (PCBs) have been difficult to identify by traditional isolation techniques. Numerous, as yet unsuccessful, attempts have been made to isolate and culture the dechlorinating species. To overcome this limitation, amplified rDNA restriction analysis (ARDRA) of a clone library, denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (TRFLP) were used concurrently to compare their effectiveness for characterizing an enriched microbial community. These methods were applied to enrichment cultures that selectively dechlorinated double-flanked chlorines in the PCB congener 2,3,4,5 chlorinated biphenyl. The methods have different biases, which were apparent from discrepancies in the relative clone frequencies (ARDRA), band intensities (DGGE) or peak heights (TRFLP) from the same enrichment culture. However, each method was effectively qualitative and identified the same organisms: a low G + C Gram-positive eubacterium, an organism most similar to the green non-sulphur bacteria, an Aminobacterium sp. and a Desulfovibrio sp. Overall, in community fingerprinting and preliminary identification, DGGE proved to be the most rapid and effective tool for the monitoring of microorganisms within a highly enriched culture. TRFLP results corroborated DGGE fingerprint analysis; however, identification required the additional step of creating a clone library. ARDRA provided an in-depth analysis of the community and this technique detected slight intraspecies sequence variation in 16S rDNA. These molecular methods are common in environmental microbiology, but rarely are they compared with the same sample site or culture. In general, all three methods detected similar community profiles, but inherent biases resulted in different detection limits for individual OTUs (operational taxonomic units).  相似文献   

11.
Soil is a highly heterogeneous matrix, which can contain thousands of different bacterial species per gram. Only a small component of this diversity (maybe <1%) is commonly captured using standard isolation techniques, although indications are that a larger proportion of the soil community is in fact culturable. Better isolation techniques yielding greater bacterial diversity would be of benefit for understanding the metabolic activity and capability of many soil microorganisms. We studied the response of soil bacterial communities to carbon source enrichment in small matrices by means of terminal restriction fragment length polymorphism (TRFLP) analysis. The community composition of replicate enrichments from soil displayed high variability, likely attributable to soil heterogeneity. An analysis of TRFLP data indicated that enrichment on structurally similar carbon sources selected for similar bacterial communities. The same analysis indicated that communities first enriched on glucose or benzoate and subsequently transferred into medium containing an alternate carbon source retained a distinct community signature induced by the carbon source used in the primary enrichment. Enrichment on leucine presented a selective challenge that was able to override the imprint left by primary enrichment on acetate. In a time series experiment community change was most rapid 18 hours after inoculation, corresponding to exponential growth. Community composition did not stabilize even 4 days after secondary enrichment. Four different soil types were enriched on four different carbon sources. TRFLP analysis indicated that in three out of four cases communities enriched on the same carbon source were more similar regardless of which soil type was used. Conversely, the garden soil samples yielded similar enrichment communities regardless of the enrichment carbon source. Our results indicate that in order to maximize the diversity of bacteria recovered from the environment, multiple enrichments should be performed using a chemically diverse set of carbon sources.  相似文献   

12.
SUMMARY: If a cancer patient develops multiple tumors, it is sometimes impossible to determine whether these tumors are independent or clonal based solely on pathological characteristics. Investigators have studied how to improve this diagnostic challenge by comparing the presence of loss of heterozygosity (LOH) at selected genetic locations of tumor samples, or by comparing genomewide copy number array profiles. We have previously developed statistical methodology to compare such genomic profiles for an evidence of clonality. We assembled the software for these tests in a new R package called 'Clonality'. For LOH profiles, the package contains significance tests. The analysis of copy number profiles includes a likelihood ratio statistic and reference distribution, as well as an option to produce various plots that summarize the results. AVAILABILITY: Bioconductor (http://bioconductor.org/packages/release/bioc/html/Clonality.html) and http://www.mskcc.org/mskcc/html/13287.cfm.  相似文献   

13.
Extracellular DNA in single- and multiple-species unsaturated biofilms   总被引:1,自引:0,他引:1  
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.  相似文献   

14.
AIMS: To investigate the effects of aeration on the ex situ biodegradation of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil and its effect on the microbial community present. METHODS AND RESULTS: Aerated and nonaerated microcosms of soil excavated from a former timber treatment yard were maintained and sampled for PAH concentration and microbial community changes by terminal restriction fragment length polymorphism (TRFLP) analysis. After an experimental period of just 13 days, degradation was observed with all the PAHs monitored. Abiotic controls showed no loss of PAH. Results unexpectedly showed greater loss of the higher molecular weight PAHs in the nonaerated control. This may have been due to the soil excavation causing initial decompaction and aeration and the resulting changes caused in the microbial community composition, indicated by TRFLP analysis showing several ribotypes greatly increasing in relative abundance. Similar changes in both microcosms were observed but with several possible key differences. The species of micro-organisms putatively identified included Bacilli, pseudomonad, aeromonad, Vibrio and Clostridia species. CONCLUSIONS: Excavation of the contaminated soil leads to decompaction, aeration and increased nutrient availability, which in turn allow microbial biodegradation of the PAHs and a change in the microbial community structure. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding the changes occurring in the microbial community during biodegradation of all PAHs is essential for the development of improved site remediation protocols. TRFLP allows useful monitoring of the total microbial community.  相似文献   

15.
Extracellular DNA in Single- and Multiple-Species Unsaturated Biofilms   总被引:9,自引:2,他引:7  
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.  相似文献   

16.
Sandy or permeable sediment deposits cover the majority of the shallow ocean seafloor, and yet the associated bacterial communities remain poorly described. The objective of this study was to expand the characterization of bacterial community diversity in permeable sediment impacted by advective pore water exchange and to assess effects of spatial, temporal, hydrodynamic, and geochemical gradients. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze nearly 100 sediment samples collected from two northeastern Gulf of Mexico subtidal sites that primarily differed in their hydrodynamic conditions. Communities were described across multiple taxonomic levels using universal bacterial small subunit (SSU) rRNA targets (RNA- and DNA-based) and functional markers for nitrification (amoA) and denitrification (nosZ). Clonal analysis of SSU rRNA targets identified several taxa not previously detected in sandy sediments (i.e., Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Firmicutes). Sequence diversity was high among the overall bacterial and denitrifying communities, with members of the Alphaproteobacteria predominant in both. Diversity of bacterial nitrifiers (amoA) remained comparatively low and did not covary with the other gene targets. TRFLP fingerprinting revealed changes in sequence diversity from the family to species level across sediment depth and study site. The high diversity of facultative denitrifiers was consistent with the high permeability, deeper oxygen penetration, and high rates of aerobic respiration determined in these sediments. The high relative abundance of Gammaproteobacteria in RNA clone libraries suggests that this group may be poised to respond to short-term periodic pulses of growth substrates, and this observation warrants further investigation.  相似文献   

17.
Analysis of microbial community structure in complex environmental samples using nucleic acid techniques requires efficient unbiased DNA extraction procedures; however, humic acids and other contaminants complicate the isolation of PCR-amplifiable DNA from compost and other organic-rich samples. In this study, combinations of DNA extraction and purification methods were compared based on DNA yield, humic acid contamination, PCR amplifiability, and microbial community structure assessed by terminal restriction fragment length polymorphisms (TRFLP) of amplified 16S rRNA genes. DNA yield and humic acid contamination, determined by A230, varied significantly between extraction methods. Humic acid contamination of DNA obtained from compost decreased with increasing salt concentration in the lysis buffer. DNA purified by gel permeation chromatography (Sepharose 4B columns) gave satisfactory PCR amplification with universal eubacterial 16S rRNA gene primers only when A260/A280 ratios exceeded 1.5. DNA purified with affinity chromatography (hydroxyapatite columns), and showing A260/A280 ratios as high as 1.8, did not show consistently satisfactory PCR amplification using the same 16S rRNA primers. Almost all DNA samples purified by agarose gel electrophoresis showed satisfactory PCR amplification. Principal components analysis (PCA) of TRFLP patterns differentiated compost types based on the presence/absence of peaks and on the height of the peaks, but differences in TRFLP patterns were not appreciable between extraction methods that yielded relatively pure DNA. High levels of humic acid contamination in extracted DNA resulted in TRFLP patterns that were not consistent and introduced a bias towards lower estimates of diversity.  相似文献   

18.
Some compounds originating from the human gut microbial metabolism of exogenous and endogenous substrates may have properties that profoundly affect the host's physiological processes. The influence of these metabolites on differences in disease risk among individuals could be mediated by metabolism specific to the gut microbial community composition. In this study, we evaluated the effectiveness of terminal restriction fragment polymorphism (TRFLP) as a biomarker of the fecal microbial community (as a surrogate of gut microbiota) for application in human population-based studies. We tested the effects of experimental conditions on DNA quality, DNA quantity, and TRFLP patterns derived from gut bacterial communities. Genomic DNA was extracted from fecal slurries and the bacterial 16S rDNA genes were amplified and analyzed by TRFLP. We found that the composition of the TRFLP fingerprints varied by different extraction procedure. The best quality and quantity of community DNA extracted from fecal material was obtained by using the QIAamp DNA stool minikit (Qiagen, Valencia, CA) with 95 degrees C incubation and moderate bead beating treatment during the cell-lysis step. Homogenization of fecal samples reduced variation among replicates. Once the TRFLP procedure was optimized, we assessed the methodological and inter-individual variation in gut microbial community fingerprints. The methodological variation ranged from 4.5-8.1% and inter-individual variation was 50.3% for common peaks. In conclusion, standardized TRFLP is a robust, reproducible, and high-throughput method that will provide a useful biomarker for characterizing gut microbiota in human fecal samples.  相似文献   

19.
Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time.  相似文献   

20.
A new approach to characterize growing microorganisms in environmental samples based on labeling microbial DNA with H(2)(18)O is described. To test if sufficient amounts of (18)O could be incorporated into DNA to use water as a labeling substrate for stable isotope probing, Escherichia coli DNA was labeled by cultivating bacteria in Luria broth with H(2)(18)O and labeled DNA was separated from [(16)O]DNA on a cesium chloride gradient. Soil samples were incubated with H(2)(18)O for 6, 14, or 21 days, and isopycnic centrifugation of the soil DNA showed the formation of two bands after 6 days and three bands after 14 or 21 days, indicating that (18)O can be used in the stable isotope probing of soil samples. DNA extracted from soil incubated for 21 days with H(2)(18)O was fractionated after isopycnic centrifugation and DNA from 17 subsamples was used in terminal restriction fragment length polymorphism (TRFLP) analysis of bacterial 16S rRNA genes. The TRFLP patterns clustered into three groups that corresponded to the three DNA bands. The fraction of total fluorescence contributed by individual terminal restriction fragments (TRF) to a TRFLP pattern varied across the 17 subsamples so that a TRF was more prominent in only one of the three bands. Labeling soil DNA with H(2)(18)O allows the identification of newly grown cells. In addition, cells that survive but do not divide during an incubation period can also be characterized with this new technique because their DNA remains without the label.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号