首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA barcoding has greatly accelerated the pace of specimen identification to the species level, as well as species delineation. Whereas the application of DNA barcoding to the matching of unknown specimens to known species is straightforward, its use for species delimitation is more controversial, as species discovery hinges critically on present levels of haplotype diversity, as well as patterning of standing genetic variation that exists within and between species. Typical sample sizes for molecular biodiversity assessment using DNA barcodes range from 5 to 10 individuals per species. However, required levels that are necessary to fully gauge haplotype variation at the species level are presumed to be strongly taxon‐specific. Importantly, little attention has been paid to determining appropriate specimen sample sizes that are necessary to reveal the majority of intraspecific haplotype variation within any one species. In this paper, we present a brief outline of the current literature and methods on intraspecific sample size estimation for the assessment of COI DNA barcode haplotype sampling completeness. The importance of adequate sample sizes for studies of molecular biodiversity is stressed, with application to a variety of metazoan taxa, through reviewing foundational statistical and population genetic models, with specific application to ray‐finned fishes (Chordata: Actinopterygii). Finally, promising avenues for further research in this area are highlighted.  相似文献   

2.
This study evaluates the utility of DNA barcoding to traditional morphology‐based species identifications for the fish fauna of the north‐eastern Congo basin. We compared DNA sequences (COI) of 821 samples from 206 morphologically identified species. Best match, best close match and all species barcoding analyses resulted in a rather low identification success of 87.5%, 84.5% and 64.1%, respectively. The ratio ‘nearest‐neighbour distance/maximum intraspecific divergence’ was lower than 1 for 26.1% of the samples, indicating possible taxonomic problems. In ten genera, belonging to six families, the number of species inferred from mtDNA data exceeded the number of species identified using morphological features; and in four cases indications of possible synonymy were detected. Finally, the DNA barcodes confirmed previously known identification problems within certain genera of the Clariidae, Cyprinidae and Mormyridae. Our results underscore the large number of taxonomic problems lingering in the taxonomy of the fish fauna of the Congo basin and illustrate why DNA barcodes will contribute to future efforts to compile a reliable taxonomic inventory of the Congo basin fish fauna. Therefore, the obtained barcodes were deposited in the reference barcode library of the Barcode of Life Initiative.  相似文献   

3.
Efficient tools for consistent species identification are important in wildlife conservation as it can provide information on the levels of species exploitation and assist in solving forensic-related problems. In this study, we evaluated the effectiveness of the mitochondrial cytochrome c oxidase subunit I (COI) barcode in species identification of Tanzanian antelope species. A 470 base-pair region of the COI gene was examined in 95 specimens representing 20 species of antelopes, buffalo and domestic Bovidae. All the Tanzanian species showed unique clades, and sequence divergence within species was <1%, whereas divergence between species ranged from 6.3% to 22%. Lowest interspecific divergence was noted within the Tragelaphus genus. Neighbour-joining phylogenetic analyses demonstrated that the examined COI region provided correct and highly supported species clustering using short fragments down to 100 base-pair lengths. This study demonstrates that even short COI fragments can efficiently identify antelope species, thus demonstrating its high potential for use in wildlife conservation activities.  相似文献   

4.
The mitochondrial cytochrome c oxidase subunit I gene is the standard DNA barcoding region used for species identification and discovery. We examined the variation of COI (454 bp) to discriminate 20 species of bats in the family Phyllostomidae that are found in the Yucatan Peninsula of southeastern Mexico and northern Guatemala and compared them genetically to other samples from Central America. The majority of these species had low intraspecific variation (mean = 0.75%), but some taxa had intraspecific variation ranging to 8.8%, suggesting the possibility of cryptic species (i.e. Desmodus rotundus and Artibeus jamaicensis). There was a recurring biogeographic pattern in eight species with a separation of northern and southern Middle American localities. The Yucatan Peninsula was a discrete area identified in four species, whereas Panama was recovered in five species of phyllostomid bats. Our study establishes a foundation for further molecular work incorporating broader taxonomic and geographic coverage to better understand the phylogeography and genetic diversity that have resulted from the ecological constraints in this region and the remarkable differentiation of bats in the Neotropics.  相似文献   

5.
6.
DNA barcoding is an effective technique to identify species and analyze phylogenesis and evolution. However, research on and application of DNA barcoding in Canis have not been carried out. In this study, we analyzed two species of Canis, Canis lupus (n = 115) and Canis latrans (n = 4), using the cytochrome c oxidase subunit I (COI) gene (1545 bp) and COI barcoding (648 bp DNA sequence of the COI gene). The results showed that the COI gene, as the moderate variant sequence, applied to the analysis of the phylogenesis of Canis members, and COI barcoding applied to species identification of Canis members. Phylogenetic trees and networks showed that domestic dogs had four maternal origins (A to D) and that the Tibetan Mastiff originated from Clade A; this result supports the theory of an East Asian origin of domestic dogs. Clustering analysis and networking revealed the presence of a closer relative between the Tibetan Mastiff and the Old English sheepdog, Newfoundland, Rottweiler and Saint Bernard, which confirms that many well-known large breed dogs in the world, such as the Old English sheepdog, may have the same blood lineage as that of the Tibetan Mastiff.  相似文献   

7.
Coleoids are part of the Cephalopoda class, which occupy an important position in most oceans both at an ecological level and at a commercial level. Nevertheless, some coleoid species are difficult to distinguish with traditional morphological identification in cases when specimens are heavily damaged during collection or when closely related taxa are existent. As a useful tool for rapid species assignment, DNA barcoding may offer significant potential for coleoid identification. Here, we used two mitochondrial fragments, cytochrome c oxidase I and the large ribosomal subunit (16S rRNA), to assess whether 34 coleoids accounting for about one-third of the Chinese coleoid fauna could be identified by DNA barcoding technique. The pairwise intra- and interspecific distances were assessed, and relationships among species were estimated by NJ and bayesian analyses. High levels of genetic differentiation within Loliolus beka led to an overlap between intra- and interspecific distances. All remaining species forming well-differentiated clades in the NJ and bayesian trees were identical for both fragments. Loliolus beka possessed two mitochondrial lineages with high levels of intraspecific distances, suggesting the occurrence of cryptic species. This study confirms the efficacy of DNA barcoding for identifying species as well as discovering cryptic diversity of Chinese coleoids. It also lays a foundation for other ecological and biological studies of Coleoidea.  相似文献   

8.
DNA sequences of cytochrome c oxidase I gene (COI) from Lepidion spp. were employed to test the efficiency of species identification. A sample of 32 individuals from five Lepidion species was sequenced and combined with 26 sequences from other BOLD projects. As a result, 58 Lepidion DNA sequences of the COI gene belonging to eight of the nine recognized Lepidion species were analysed. Sequences were aligned and formed seven clades in a Bayesian phylogenetic tree, where Lepidion lepidion and Lepidion eques grouped jointly. The Kimura 2‐parameter genetic distances, among congeners were, on average, 4.28%, 16 times greater than among conspecifics (0.27%). The main diagnostic meristic data of Lepidion spp. were compiled and a detailed morphological revision of the congeneric species L. eques and L. lepidion was made. The eye diameter was significantly different between L. eques and L. lepidion (P < 0.001). The number of anal fin rays ranged from 45 to 51 in L. lepidion and from 47 to 54 in L. eques, but no significant differences were obtained in the mean values of this variable (P = 0.07). According to the morphological and genetic analyses, the results strongly suggest that the Mediterranean codling L. lepidion and the North Atlantic codling L. eques are conspecific, making L. eques a junior synonym of L. lepidion.  相似文献   

9.
Oomycete species occupy many different environments and many ecological niches. The genera Phytophthora and Pythium for example, contain many plant pathogens which cause enormous damage to a wide range of plant species. Proper identification to the species level is a critical first step in any investigation of oomycetes, whether it is research driven or compelled by the need for rapid and accurate diagnostics during a pathogen outbreak. The use of DNA for oomycete species identification is well established, but DNA barcoding with cytochrome c oxidase subunit I (COI) is a relatively new approach that has yet to be assessed over a significant sample of oomycete genera. In this study we have sequenced COI, from 1205 isolates representing 23 genera. A comparison to internal transcribed spacer (ITS) sequences from the same isolates showed that COI identification is a practical option; complementary because it uses the mitochondrial genome instead of nuclear DNA. In some cases COI was more discriminative than ITS at the species level. This is in contrast to the large ribosomal subunit, which showed poor species resolution when sequenced from a subset of the isolates used in this study. The results described in this paper indicate that COI sequencing and the dataset generated are a valuable addition to the currently available oomycete taxonomy resources, and that both COI, the default DNA barcode supported by GenBank, and ITS, the de facto barcode accepted by the oomycete and mycology community, are acceptable and complementary DNA barcodes to be used for identification of oomycetes.  相似文献   

10.
For comparative primatology proper recognition of basal taxa (i.e. species) is indispensable, and in this the choice of a suitable gene with high phylogenetic resolution is crucial. For the goals of species identification in animals, the cytochrome c oxidase subunit 1 (cox1) has been introduced as standard marker. Making use of the difference in intra- and interspecific genetic variation – the DNA barcoding gap – cox1 can be used as a fast and accurate marker for the identification of animal species. For the Order Primates we compare the performance of cox1 (166 sequences; 50 nominal species) in species-identification with that of two other mitochondrial markers, 16S ribosomal RNA (412 sequences, 92 species) and cytochrome b (cob: 547 sequences, 72 species). A wide gap exist between intra- and interspecific divergences for both cox1 and cob genes whereas this gap is less apparent for 16S, indicating that rRNA genes are less suitable for species delimitation in DNA barcoding. For those species where multiple sequences are available there are significant differences in the intraspecific genetic distances between different mitochondrial markers, without, however, showing a consistent pattern. We conclude that cox1 allows accurate differentiation of species and as such DNA barcoding may have an important role to play in comparative primatology.  相似文献   

11.
DNA条形码及其在海洋浮游动物生态学研究中的应用   总被引:2,自引:1,他引:2  
浮游动物的准确鉴定是浮游动物生态学研究的基础.传统的基于形态特征的鉴定不仅费时费力,而且部分类群特别是浮游幼体由于形态差异细微,鉴定存在困难,导致物种多样性被低估.DNA条形码(DNA barcodes)技术为浮游动物物种鉴定提供了一个有力工具,已迅速应用于海洋浮游动物生态学研究.本文介绍了DNA条形码的基本概念、优势及局限性,总结了该技术(主要是基于线粒体细胞色素C氧化酶第一亚基(mtCOI)基因序列片段的DNA条形码)在海洋浮游动物物种快速鉴定、隐种发现、营养关系研究、生物入侵种监测、群落历史演变反演、种群遗传学以及生物地理学中的成功应用.随着DNA条形码数据库信息量覆盖率的不断提高和新一代测序技术的快速发展,DNA条形码将提供除了种类鉴定外更加丰富的信息,从而帮助人们更好地理解海洋浮游动物的多样性及其在生态系统中的功能,推动海洋浮游动物生态学的发展.  相似文献   

12.
This study represents the first comprehensive molecular assessment of freshwater fishes and lampreys from Germany. We analysed COI sequences for almost 80% of the species mentioned in the current German Red List. In total, 1056 DNA barcodes belonging to 92 species from all major drainages were used to (i) build a reliable DNA barcode reference library, (ii) test for phylogeographic patterns, (iii) check for the presence of barcode gaps between species and (iv) evaluate the performance of the barcode index number (BIN) system, available on the Barcode of Life Data Systems. For over 78% of all analysed species, DNA barcodes are a reliable means for identification, indicated by the presence of barcode gaps. An overlap between intra‐ and interspecific genetic distances was present in 19 species, six of which belong to the genus Coregonus. The Neighbour‐Joining phenogram showed 60 nonoverlapping species clusters and three singleton species, which were related to 63 separate BIN numbers. Furthermore, Barbatula barbatula, Leucaspius delineatus, Phoxinus phoxinus and Squalius cephalus exhibited remarkable levels of cryptic diversity. In contrast, 11 clusters showed haplotype sharing, or low levels of divergence between species, hindering reliable identification. The analysis of our barcode library together with public data resulted in 89 BINs, of which 56% showed taxonomic conflicts. Most of these conflicts were caused by the use of synonymies, inadequate taxonomy or misidentifications. Moreover, our study increased the number of potential alien species in Germany from 14 to 21 and is therefore a valuable groundwork for further faunistic investigations.  相似文献   

13.
In this study we tested the use of mucus from five species of Neotropical marine batoid elasmobranchs to extract genomic DNA for barcoding and phylogenetic analysis. The DNA from all individuals sampled was successfully amplified and sequenced for molecular barcode, allowing 99–100% accuracy to the species level. This method proved to provide reliable and good-quality DNA for barcoding and phylogenetic analysis of Neotropical elasmobranchs, through rapid handling and with low disturbance to animals.  相似文献   

14.
DNA barcoding of eight North American coregonine species   总被引:2,自引:0,他引:2  
Coregonine fishes have a circumpolar distribution in the Arctic and sub-Arctic Northern Hemisphere. This subfamily of Salmonidae consists of three genera: Prosopium, Stenodus and Coregonus, including over 30 species. Many species overlap spatially and are difficult to distinguish based on morphological characteristics, especially as larvae or juveniles. Here we present a method for rapid and cost-effective species identification for representatives of the three genera based on sequence variation at the mitochondrial cytochrome c oxidase subunit I gene (COI). We examined eight species common to North America with distributional overlap in Alaska. Mean pairwise sequence divergence for all eight species was 7.04% and ranged from 0.46% to 14.23%. This sequence variation was used to develop a genetic assay based on restriction fragment length polymorphism. In a blind test, this assay provided correct species assignment for 48 of 49 individuals representing all eight species. The single incorrect assignment may reflect hybridization between two closely related species. This DNA barcode-based assay promises to aid fishery managers and researchers by providing a cost-effective alternative to large-scale sequence analysis for identification of North American coregonine fishes.  相似文献   

15.
This study represents the first molecular survey of the ichthyofauna of Taal Lake and the first DNA barcoding attempt in Philippine fishes. Taal Lake, the third largest lake in the Philippines, is considered a very important fisheries resource and is home to the world's only freshwater sardine, Sardinella tawilis. However, overexploitation and introduction of exotic fishes have caused a massive decline in the diversity of native species as well as in overall productivity of the lake. In this study, 118 individuals of 23 native, endemic and introduced fishes of Taal Lake were barcoded using the partial DNA sequence of the mitochondrial cytochrome c oxidase subunit I (COI) gene. These species belong to 21 genera, 17 families and 9 orders. Divergence of sequences within and between species was determined using Kimura 2-parameter (K2P) distance model, and a neighbour-joining tree was generated with 1000 bootstrap replications using the K2P model. All COI sequences for each of the 23 species were clearly discriminated among genera. The average within species, within genus, within family and within order percent genetic divergence was 0.60%, 11.07%, 17.67% and 24.08%, respectively. Our results provide evidence that COI DNA barcodes are effective for the rapid and accurate identification of fishes and for identifying certain species that need further taxonomic investigation.  相似文献   

16.
Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis.  相似文献   

17.
ABSTRACT

The conoidean family Drilliidae Olsson, 1964 is a species-rich lineage of marine gastropods, showing a high degree of diversification in comparison to other families of Conoidea. Despite intensive molecular phylogenetic studies during the last decade that have led to notable rearrangements of conoidean systematics, the genus- and species-level taxonomy of Drilliidae has not thus far been affected and remains entirely based on shell features. In the current study we revisit species delimitation in a morphological cluster of species from the Indo-Pacific referred to as the Clavus canalicularis complex, using an integrative taxonomy approach. The species in the complex possess robust thick-walled shells typically over 15?mm in height with sculpture of prominent rounded nodules located at the whorl’s shoulder, sometimes sharp and squamiform, or producing long spines. We find that in addition to five known species, the complex comprises four new species. These are described as Clavus brianmayi n. sp. (New Caledonia), Clavus davidgilmouri n. sp. (the Philippines), Clavus andreolbrichi n. sp. (Vanuatu and New Ireland) and Clavus kirkhammetti n. sp. (Madagascar). Clavus exasperatus (Reeve, 1843), which was previously considered widely distributed in Indo-Pacific, is shown to be confined to the western Indian Ocean.  相似文献   

18.
We obtained 398 cytochrome c oxidase subunit I barcodes of 96 morphospecies of Lake Tanganyika (LT) cichlids from the littoral zone. The potential of DNA barcoding in these fishes was tested using both species identification and species delineation methods. The best match (BM) and best close match (BCM) methods were used to evaluate the overall identification success. For this, three libraries were analysed in which the specimens were categorized into Operational Taxonomic Units (OTU) in three alternative ways: (A) morphologically distinct, including undescribed, species, (B) valid species and (C) complexes of morphologically similar or closely related species. For libraries A, B and C, 73, 73 and 96% (BM) and 72, 70 and 94% (BCM) of the specimens were correctly identified. Additionally, the potential of two species delineation methods was tested. The General Mixed Yule Coalescent (GMYC) analysis suggested 70 hypothetical species, while the Automatic Barcode Gap Discovery (ABGD) method revealed 115 putative species. Although the ABGD method had a tendency to oversplit, it outperformed the GMYC analysis in retrieving the species. In most cases where ABGD suggested oversplitting, this was due to intraspecific geographical variation. The failure of the GMYC method to retrieve many species could be attributed to discrepancies between mitochondrial gene trees and the evolutionary histories of LT cichlid species. Littoral LT cichlids have complex evolutionary histories that include instances of hybridization, introgression and rapid speciation. Nevertheless, although the utility of DNA barcoding in identification is restricted to the level of complexes, it has potential for species discovery in cichlid radiations.  相似文献   

19.
DNA barcoding uses a short, standardized DNA fragment to sort individuals into species. This molecular technique has applications in fields including ecology, evolution, conservation, and biogeography. In ecological applications such as species monitoring and habitat restoration, its potential has not been fully realized and implemented. Invertebrates are excellent biological indicators, as changes in species diversity or community assemblage provide important insights into the condition of, or changes in, the environment. This information is particularly useful within the context of restoration ecology. In this study, DNA barcoding is used to assess the potential of Hemiptera as a biological indicator of restoration success for the Buffelsdraai Landfill Site Community Reforestation Project (Durban, South Africa). A total of 393 Hemiptera specimens were collected from sites reforested at distinct phases (plots reforested in 2010, 2012, and 2015) and two reference sites (natural forest and grassland). The Hemiptera species composition and assemblage were assessed by analyzing diversity indices, ordination, unweighted pair‐group average cluster analysis, and phylogenetic analysis. Hemiptera species composition varied significantly across the chronologically different reforested sites, with a higher species richness observed in the older reforested plots. This suggests that Hemiptera diversity can be used to track restoration success, even over the small temporal scale used in this study. This study highlights the utility of DNA barcoding as a taxonomic sorting tool both to monitor ecological restoration and to discover specific taxa within Hemiptera that may be useful biological indicators.  相似文献   

20.
Using a standard cytochrome c oxidase I sequence, DNA barcoding has been shown to be effective to distinguish known species and to discover cryptic species. Here we assessed the efficiency of DNA barcoding for the amphipod genus Gammarus from China. The maximum intraspecific divergence for widespread species, Gammarus lacustris, was 3.5%, and mean interspecific divergence reached 21.9%. We presented a conservative benchmark for determining provisional species using maximum intraspecific divergence of Gammarus lacustris. Thirty-one species possessed distinct barcode clusters. Two species were comprised of highly divergent clades with strong neighbor-joining bootstrap values, and likely indicated the presence of cryptic species. Although DNA barcoding is effective, future identification of species of Gammarus should incorporate DNA barcoding and morphological detection[Current Zoology 55(2):158-164,2009].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号