首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
肿瘤有多种机制产生化疗药物耐药性.自噬是一种在正常细胞和病理细胞中普遍存在的生理机制,调控自噬的分子和信号传导通路错综复杂.自噬与凋亡有着独特的交叉联系,使得自噬在肿瘤化疗耐药性中发挥着促进或抑制耐药的双重作用.自噬在肿瘤耐药中的这种截然相反的作用与化疗给药浓度、细胞类型、自噬强度等因素有关,但具体机制尚未完全明确.然而,将自噬途径作为治疗肿瘤、降低化疗药物耐药性的靶点有着广阔的应用前景.  相似文献   

2.
BackgroundDrug resistance is a serious challenge in cancer treatment that can render chemotherapy a failure. Understanding the mechanisms behind drug resistance and developing novel therapeutic approaches are cardinal steps in overcoming this issue. Clustered regularly interspaced short palindrome repeats (CRISPR) gene-editing technology has proven to be a useful tool to study cancer drug resistance mechanisms and target the responsible genes. In this review, we evaluated original research studies that used the CRISPR tool in three areas related to drug resistance, namely screening resistance-related genes, generating modified models of resistant cells and animals, and removing resistance by genetic manipulation. We reported the targeted genes, study models, and drug groups in these studies. In addition to discussing different applications of CRISPR technology in cancer drug resistance, we analyzed drug resistance mechanisms and provided examples of CRISPR’s role in studying them. Although CRISPR is a powerful tool for examining drug resistance and sensitizing resistant cells to chemotherapy, more studies are required to overcome its disadvantages, such as off-target effects, immunotoxicity, and inefficient delivery of CRISPR/cas9 into the cells.  相似文献   

3.
The refractory nature of many human cancers to multi-agent chemotherapy is termed multidrug resistance (MDR). In the past several decades, a major focus of clinical and basic research has been to characterize the genetic and biochemical mechanisms mediating this phenomenon. To provide model systems in which to study mechanisms of multidrug resistance,in vitro studies have established MDR cultured cell lines expressing resistance to a broad spectrum of unrelated drugs. In many of these cell lines, the expression of high levels of multidrug resistance developed in parallel to the appearance of cytogenetically-detectable chromosomal anomalies resulting from gene amplification. This review describes cytogenetic and molecular-based studies that have characterized DNA amplification structures in MDR cell lines and describes the important role gene amplification played in the cloning and characterization of the mammalian multidrug resistance genes (mdr). In addition, this review discusses the genetic selection generally used to establish the MDR cell lines, and how drug selections performed in transformed cell lines generally favor the genetic process of gene amplification, which is still exploited to identify drug resistance genes that may play an important role in clinical MDR.  相似文献   

4.

Background

Resistance to chemotherapy severely limits the effectiveness of chemotherapy drugs in treating cancer. Still, the mechanisms and critical pathways that contribute to chemotherapy resistance are relatively unknown. This study elucidates the chemoresistance-associated pathways retrieved from the integrated biological interaction networks and identifies signature genes relevant for chemotherapy resistance.

Methods

An integrated network was constructed by collecting multiple metabolic interactions from public databases and the k-shortest path algorithm was implemented to identify chemoresistant related pathways. The identified pathways were then scored using differential expression values from microarray data in chemosensitive and chemoresistant ovarian and lung cancers. Finally, another pathway database, Reactome, was used to evaluate the significance of genes within each filtered pathway based on topological characteristics.

Results

By this method, we discovered pathways specific to chemoresistance. Many of these pathways were consistent with or supported by known involvement in chemotherapy. Experimental results also indicated that integration of pathway structure information with gene differential expression analysis can identify dissimilar modes of gene reactions between chemosensitivity and chemoresistance. Several identified pathways can increase the development of chemotherapeutic resistance and the predicted signature genes are involved in drug resistant during chemotherapy. In particular, we observed that some genes were key factors for joining two or more metabolic pathways and passing down signals, which may be potential key targets for treatment.

Conclusions

This study is expected to identify targets for chemoresistant issues and highlights the interconnectivity of chemoresistant mechanisms. The experimental results not only offer insights into the mode of biological action of drug resistance but also provide information on potential key targets (new biological hypothesis) for further drug-development efforts.  相似文献   

5.
DNA topoisomerase I is a nuclear enzyme which catalyzes the conversion of the DNA topology by introducing single-strand breaks into the DNA molecule. This enzyme represents a novel and distinct molecule target for cancer therapy by antitopoisomerase drugs belonging to the campthotecin series of antineoplastics. As many tumors can acquire resistance to drug treatment and become refractary to the chemotherapy it is very important to investigate the mechanisms involved in such a drug resistance for circumventing the phenomenon. This article describes the role of topoisomerase I in cell functions and the methods used to assess its in vitro catalytic activity. It reviews the mechanisms of cytotoxicity of the most specific antitopoisomerase I drugs by considering also the phenomenon of drug resistance. Some factors useful to drive the future perspectives in the development of new topoisomerase I inhibitors are also evidenced and discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The ability of glucocorticoids (GC) to efficiently kill lymphoid cells has led to their inclusion in essentially all chemotherapy protocols for lymphoid malignancies. This review summarizes recent findings related to the molecular basis of GC-induced apoptosis and GC resistance, and discusses their potential clinical implications. Accumulating evidence suggests that GC may induce cell death via different pathways resulting in apoptotic or necrotic morphologies, depending on the availability/responsiveness of the apoptotic machinery. The former might result from regulation of typical apoptosis genes such as members of the Bcl-2 family, the latter from detrimental GC effects on essential cellular functions possibly perpetuated by GC receptor (GR) autoinduction. Although other possibilities exist, GC resistance might frequently result from defective GR expression, perhaps the most efficient means to target multiple antileukemic GC effects. Numerous novel drug combinations are currently being tested to prevent resistance and improve GC efficacy in the therapy of lymphoid malignancies.  相似文献   

7.
化疗在恶性肿瘤的综合治疗中占有非常重要的地位,而耐药性是严重影响肿瘤病人化疗效果及生存的主要原因之一,其中多药耐药(multi-drug resistance,MDR)最具临床意义。多药耐药是指肿瘤细胞对某一化疗药物产生耐药性后,对其他化学结构及机理不同的化疗药物也产生交叉耐药性。研究表明MDR是一个多阶段发展、多因素参与的复杂事件。逆转肿瘤多药耐药是目前肿瘤化疗的研究热点之一。近年随着基础科学研究的不断深入,基因逆转肿瘤多药耐药的研究已从分子水平上,定点、多位点阻断多药耐药基因的表达,已取得一些显著的进展。本文对肿瘤多药耐药机制以及逆转肿瘤多药耐药性的相关基因做一简要综述。  相似文献   

8.
Zhang JT 《Cell research》2007,17(4):311-323
Multidrug resistance (MDR) is a major problem in cancer chemotherapy. One of the best known mechanisms of MDR is the elevated expression of ATP-binding cassette (ABC) transporters. While some members of human ABC transporters have been shown to cause drug resistance with elevated expression, it is not yet known whether the over-expression of other members could also contribute to drug resistance in many model cancer cell lines and clinics. The recent development ofmicroarrays and quantitative PCR arrays for expression profiling analysis of ABC transporters has helped address these issues. In this article, various arrays with limited or full list of ABC transporter genes and their use in identifying ABC transporter genes in drug resistance and chemo-sensitivity prediction will be reviewed.  相似文献   

9.
Platinum‐based chemotherapy drugs play a very important role in the treatment of patients with advanced colorectal cancer, but the drug resistance of platinum‐based chemotherapy drugs is an important topic that puzzles us. If we can find mechanisms of resistance, it will be revolutionary for us. We analysed the differential genes, core genes and their enrichment pathways in platinum‐resistant and non‐resistant patients through a public database. Platinum‐resistant cell lines were cultured in vitro for in vitro colony and Transwell analysis. Tumorigenesis analysis of nude mice in vivo. Verify the function of core genes. Through differential gene and enrichment analysis, we found that CUL4B was the main factor affecting platinum drug resistance and EMT. Our hypothesis was further verified by in vitro drug‐resistant and wild‐type cell lines and in vivo tumorigenesis analysis of nude mice. CUL4B leads to platinum drug resistance in colorectal cancer by affecting tumour EMT.  相似文献   

10.
Resistance to conventional chemotherapy remains a major cause of cancer relapse and cancer-related deaths. Therefore, there is an urgent need to overcome resistance barriers. To improve cancer treatment approaches, it is critical to elucidate the basic mechanisms underlying drug resistance. Increasingly, the mechanisms involving micro-RNAs (miRNAs) are studied because miRNAs are also considered practical therapeutic options due to high degrees of specificity, efficacy, and accuracy, as well as their ability to target multiple genes at the same time. Years of research have firmly established miR-34 as a key tumor suppressor miRNA whose target genes are involved in drug resistance mechanisms. Indeed, numerous articles show that low levels of circulating miR-34 or tumor-specific miR-34 expression are associated with poor response to chemotherapy. In addition, elevation of inherently low miR-34 levels in resistant cancer cells effectively restores sensitivity to chemotherapeutic agents. Here, we review this literature, also highlighting some contradictory observations. In addition, we discuss the potential utility of miR-34 expression as a predictive biomarker for chemotherapeutic drug response. Although caution needs to be exercised, miR-34 is emerging as a biomarker that could improve cancer precision medicine.  相似文献   

11.
Sepsis is an acute systemic inflammatory disease. Glucocorticoids (GCs), which function by binding to the GC receptor GR have very powerful anti-inflammatory activities, yet they are hardly useful in sepsis. We can thus consider sepsis as a GC resistant disease. We here review the literature which has investigated this GC resistance, and summarize the mechanisms of GC resistance that have been observed in other diseases and in experimental models. We also discuss the importance of GC resistance in sepsis, in terms of the contribution of this phenomenon to the pathogenesis of sepsis.  相似文献   

12.
Mechanisms of resistance to cancer chemotherapy are poorly understood. Molecular pathways involving genes associated with inherited cancer syndromes could represent mechanisms of chemoresistance. Microarray techniques can identify simultaneous alterations in the mRNA expression of multiple genes, but identification of the exact mechanism responsible for a particular phenotype, including resistance to a specific drug, remains problematic. Genes in which mutations cause inherited cancers play vital roles in apoptosis, growth arrest and/or DNA repair, and are inactivated by somatic mutations, deletions or hypermethylation in most cancer tissues. Similarities between carcinogenic injury and cell damage created by chemotherapeutics suggests that somatic inactivation of such genes is crucially important to drug sensitivity.  相似文献   

13.
Gastric cancer (GC) is one of the major public health concerns. Long non-coding RNAs (lncRNAs) have been increasingly demonstrated to possess a strong correlation with GC and play a critical role in GC occurrence, progression, metastasis and drug resistance. Many studies have shed light on the understanding of the underlying mechanisms of lncRNAs in GC. In this review, we summarized the updated research about lncRNAs in GC, focusing on their roles in Helicobacter pylori infection, GC metastasis, tumor microenvironment regulation, drug resistance and associated signaling pathways. LncRNAs may serve as novel biomarkers for diagnosis and prognosis of GC and potential therapeutic targets. The research gaps and future directions were also discussed.  相似文献   

14.
Multidrug resistance (MDR) is the protection of a tumor cell population against numerous drugs differing in chemical structure and mechanisms of influence on the cells. MDR is one of the major causes of failures of chemotherapy of human malignancies. Recent studies show that the molecular mechanisms of MDR are numerous. Cellular drug resistance is mediated by different mechanisms operating at different steps of the cytotoxic action of the drug from a decrease of drug accumulation in the cell to the abrogation of apoptosis induced by the chemical substance. Often several different mechanisms are switched on in the cells, but usually one major mechanism is operating. The most investigated mechanisms with known clinical significance are: a) activation of transmembrane proteins effluxing different chemical substances from the cells (P-glycoprotein is the most known efflux pump); b) activation of the enzymes of the glutathione detoxification system; c) alterations of the genes and the proteins involved into the control of apoptosis (especially p53 and Bcl-2).  相似文献   

15.
Resistance to chemotherapy limits the effectiveness of current cancer therapies, including those used to treat colorectal cancer, which is the second most common cause of cancer death in Europe and the United States. 5-Fluorouracil-based chemotherapy regimens are the standard treatment for colorectal cancer in both the adjuvant and advanced disease settings. Drug resistance is thought to cause treatment failure in over 90% of patients with metastatic cancer, while drug resistant micrometastic tumour cells may also reduce the impact of adjuvant chemotherapy treatment. The identification of panels of biomarkers that not only identify those patients most likely to benefit from chemotherapy treatment, but also which chemotherapies to use, would be a major advance. In this review, we describe molecular mechanisms of drug resistance that may be relevant to colorectal cancer. We also describe the results of predictive biomarker studies in this disease. Finally, we discuss how pharmacogenomics and other high through-put technologies may impact on the clinical management of colorectal cancer in the future.  相似文献   

16.
Cisplatin is the major chemotherapeutic drug in gastric cancer, particularly in treating advanced gastric cancer. Tumour cells often develop resistance to chemotherapeutic drugs, which seriously affects the efficacy of chemotherapy. GPR30 is a novel oestrogen receptor that is involved in the invasion, metastasis and drug resistance of many tumours. Targeting GPR30 has been shown to increase the drug sensitivity of breast cancer cells. However, few studies have investigated the role of GPR30 in gastric cancer. Epithelial-mesenchymal transition (EMT) has been shown to be associated with the development of chemotherapeutic drug resistance. In this study, we demonstrated that GPR30 is involved in cisplatin resistance by promoting EMT in gastric cancer. GPR30 knockdown resulted in increased sensitivity of different gastric cancer (GC) cells to cisplatin and alterations in the epithelial/mesenchymal markers. Furthermore, G15 significantly enhanced the cisplatin sensitivity of GC cells while G1 inhibited this phenomenon. In addition, EMT occurred when AGS and BGC-823 were treated with cisplatin. Down-regulation of GPR30 with G15 inhibited this transformation, while G1 promoted it. Taken together, these results revealed the role of GPR30 in the formation of cisplatin resistance, suggesting that targeting GPR30 signalling may be a potential strategy for improving the efficacy of chemotherapy in gastric cancer.  相似文献   

17.
Glucocorticoids (GC) control cell cycle progression and induce apoptosis in cells of the lymphoid lineage. Physiologically, these phenomena have been implicated in regulating immune functions and repertoire generation. Clinically, they form the basis of inclusion of GC in essentially all chemotherapy protocols for lymphoid malignancies. In spite of their significance, the molecular mechanisms underlying the anti-leukemic GC effects and the clinically important phenomenon of GC resistance are still unknown. This review summarizes recent findings related to GC-induced apoptosis, cell cycle arrest, and GC resistance with particular emphasis on acute lymphoblastic leukemia (ALL). We hypothesize that under conditions of physiological Bcl-2 expression, GC might induce classical programmed cell death by directly perturbing the Bcl-2 rheostat. In the presence of anti-apoptotic Bcl-2 proteins, cell death might result from accumulating catabolic and/or other detrimental GC effects driven by, and critically dependent on, GC receptor (GR) autoinduction. Although still controversial, there is increasing evidence for release of apoptogenic factors through pores in the outer mitochondrial membrane, rather than deltapsiloss-dependent membrane rupture, with maintenance of mitochondrial function at least in the early phase of the death response. GC-induced cell cycle arrest in ALL cells appears to be independent of apoptosis induction and vice versa, and critically depends on repression of both cyclin-D3 and c-myc followed by increased expression of the cyclin-dependent kinase inhibitor, p27Kip1. Since development of GC-resistant clones requires both cell cycle progression and survival, GC resistance might frequently result from structural or regulatory defects in GR expression, perhaps the most efficient means to target both pathways concurrently.  相似文献   

18.
《Journal of molecular biology》2019,431(18):3450-3461
Isoniazid (INH) was the first synthesized drug that mediated bactericidal killing of the bacterium Mycobacterium tuberculosis, a major clinical breakthrough. To this day, INH remains a cornerstone of modern tuberculosis (TB) chemotherapy. This review describes the serendipitous discovery of INH, its effectiveness on TB patients, and early studies to discover its mechanisms of bacteriocidal activity. Forty years after its introduction as a TB drug, the development of gene transfer in mycobacteria enabled the discovery of the genes encoding INH resistance, namely, the activator (katG) and the target (inhA) of INH. Further biochemical and x-ray crystallography studies on KatG and InhA proteins and mutants provided comprehensive understanding of INH mode of action and resistance mechanisms. Bacterial cultures can harbor subpopulations that are genetically or phenotypically resistant cells, the latter known as persisters. Treatment of exponentially growing cultures of M. tuberculosis with INH reproducibly kills 99% to 99.9% of cells in 3 days. Importantly, the surviving cells are slowly replicating or non-replicating cells expressing a unique stress response signature: these are the persisters. These persisters can be visualized using dual-reporter mycobacteriophages and their formation prevented using reducing compounds, such as N-acetylcysteine or vitamin C, that enhance M. tuberculosis' respiration. Altogether, this review portrays a detailed molecular analysis of INH killing and resistance mechanisms including persistence. The phenomenon of persistence is clearly the single greatest impediment to TB control, and research aimed at understanding persistence will provide new strategies to improve TB chemotherapy.  相似文献   

19.
Cancer stem cell (CSC) based gene expression signatures are associated with prognosis in various tumour types and CSCs are suggested to be particularly drug resistant. The aim of our study was first, to determine the prognostic significance of CSC-related gene expression in residual tumour cells of neoadjuvant-treated gastric cancer (GC) patients. Second, we wished to examine, whether expression alterations between pre- and post-therapeutic tumour samples exist, consistent with an enrichment of drug resistant tumour cells. The expression of 44 genes was analysed in 63 formalin-fixed, paraffin embedded tumour specimens with partial tumour regression (10-50% residual tumour) after neoadjuvant chemotherapy by quantitative real time PCR low-density arrays. A signature of combined GSK3B(high), β-catenin (CTNNB1)(high) and NOTCH2(low) expression was strongly correlated with better patient survival (p<0.001). A prognostic relevance of these genes was also found analysing publically available gene expression data. The expression of 9 genes was compared between pre-therapeutic biopsies and post-therapeutic resected specimens. A significant post-therapeutic increase in NOTCH2, LGR5 and POU5F1 expression was found in tumours with different tumour regression grades. No significant alterations were observed for GSK3B and CTNNB1. Immunohistochemical analysis demonstrated a chemotherapy-associated increase in the intensity of NOTCH2 staining, but not in the percentage of NOTCH2. Taken together, the GSK3B, CTNNB1 and NOTCH2 expression signature is a novel, promising prognostic parameter for GC. The results of the differential expression analysis indicate a prominent role for NOTCH2 and chemotherapy resistance in GC, which seems to be related to an effect of the drugs on NOTCH2 expression rather than to an enrichment of NOTCH2 expressing tumour cells.  相似文献   

20.
Background: 5-Fluorouracil (5Fu) chemotherapy is the first treatment of choice for advanced gastric cancer (GC), but its effectiveness is limited by drug resistance. Emerging evidence suggests that the existence of cancer stem cells (CSCs) contributes to chemoresistance. The aim of the present study was to determine whether 5Fu chemotherapy generates residual cells with CSC-like properties in GC. Methods: Human GC cell lines, SGC7901 and AGS, were exposed to increasing 5Fu concentrations. The residual cells were assessed for both chemosensitivity and CSC-like properties. B lymphoma Mo-MLV insertion region 1 (BMI1), a putative CSC protein, was analyzed by immunohistochemical staining and subjected to pairwise comparison in GC tissues treated with or without neoadjuvant 5Fu-based chemotherapy. The correlation between BMI1 expression and recurrence-free survival in GC patients who received 5Fu-based neoadjuvant chemotherapy was then examined. Results: The residual cells exhibited 5Fu chemoresistance. These 5Fu-resistant cells displayed some CSC features, such as a high percentage of quiescent cells, increased self-renewal ability and tumorigenicity. The 5Fu-resistant cells were also enriched with cells expressing cluster of differentiation (CD)133+, CD326+ and CD44+CD24-. Moreover, the BMI1 gene was overexpressed in 5Fu-resistant cells, and BMI1 knockdown effectively reversed chemoresistance. The BMI1 protein was highly expressed consistently in the remaining GC tissues after 5Fu-based neoadjuvant chemotherapy, and BMI1 levels were correlated positively with recurrence-free survival in GC patients who received 5Fu-based neoadjuvant chemotherapy. Conclusions: Our data provided molecular evidence illustrating that 5Fu chemotherapy in GC resulted in acquisition of CSC-like properties. Moreover, enhanced BMI1 expression contributed to 5Fu resistance and may serve as a potential therapeutic target to reverse chemoresistance in GC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号