首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species.  相似文献   

2.
Members of the genus Aeromonas are ubiquitous in nature and have increasingly been implicated in numerous diseases of humans and other animal taxa. Although some species of aeromonads are human pathogens, their presence, density, and relative abundance are rarely considered in assessing water quality. The objectives of this study were to identify Aeromonas species within Lake Erie, determine their antibiotic resistance patterns, and assess their potential pathogenicity. Aeromonas strains were isolated from Lake Erie water by use of Aeromonas selective agar with and without tetracycline and ciprofloxacin. All isolates were analyzed for hemolytic ability and cytotoxicity against human epithelial cells and were identified to the species level by using 16S rRNA gene restriction fragment length polymorphisms and phylogenetic analysis based on gyrB gene sequences. A molecular virulence profile was identified for each isolate, using multiplex PCR analysis of six virulence genes. We demonstrated that Aeromonas comprised 16% of all culturable bacteria from Lake Erie. Among 119 Aeromonas isolates, six species were identified, though only two species (Aeromonas hydrophila and A. veronii) predominated among tetracycline- and ciprofloxacin-resistant isolates. Additionally, both of these species demonstrated pathogenic phenotypes in vitro. Virulence gene profiles demonstrated a high prevalence of aerolysin and serine protease genes among A. hydrophila and A. veronii isolates, a genetic profile which corresponded with pathogenic phenotypes. Together, our findings demonstrate increased antibiotic resistance among potentially pathogenic strains of aeromonads, illustrating an emerging potential health concern.  相似文献   

3.
Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16–23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.  相似文献   

4.
This study was conducted to examine the rate of contamination and the molecular characteristics of enteric bacteria isolated from a selection of food sources in Vietnam. One hundred eighty raw food samples were tested; 60.8% of meat samples and 18.0% of shellfish samples were contaminated with Salmonella spp., and more than 90% of all food sources contained Escherichia coli. The isolates were screened for antibiotic resistance against 15 antibiotics, and 50.5% of Salmonella isolates and 83.8% of E. coli isolates were resistant to at least one antibiotic. Isolates were examined for the presence of mobile genetic elements conferring antibiotic resistance. Fifty-seven percent of E. coli and 13% of Salmonella isolates were found to contain integrons, and some isolates contained two integrons. Sequencing results revealed that the integrons harbored various gene cassettes, including aadA1, aadA2, and aadA5 (resistance to streptomycin and spectinomycin), aacA4 (resistance to aminoglycosides), the dihydrofolate reductase gene cassettes dhfrXII, dfrA1, and dhfrA17 (trimethoprim resistance), the beta-lactamase gene blaPSE1 (ampicillin resistance), and catB3 (chloramphenicol resistance). Plasmids were also detected in all 23 antibiotic-resistant Salmonella isolates and in 33 E. coli isolates. Thirty-five percent of the Salmonella isolates and 76% of the E. coli isolates contained plasmids of more than 95 kb, and some of the isolates contained two large plasmids. Conjugation experiments showed the successful transfer of all or part of the antibiotic resistance phenotypes among the Salmonella and E. coli food isolates. Our results show that enteric bacteria in raw food samples from Vietnam contain a pool of mobile genetic elements and that the transfer of antibiotic resistance can readily occur between similar bacteria.  相似文献   

5.

Background

Increase in the number of multidrug resistant pathogens and the accompanied rise in case fatality rates has hampered the treatment of many infectious diseases including cholera. Unraveling the mechanisms responsible for multidrug resistance in the clinical isolates of Vibrio cholerae would help in understanding evolution of these pathogenic bacteria and their epidemic potential. This study was carried out to identify genetic factors responsible for multiple drug resistance in clinical isolates of Vibrio cholerae O1, serotype Ogawa, biotype El Tor isolated from the patients admitted to the Infectious Diseases Hospital, Kolkata, India, in 2009.

Methodology/Principal Findings

One hundred and nineteen clinical isolates of V. cholerae were analysed for their antibiotic resistance phenotypes. Antibiogram analysis revealed that majority of the isolates showed resistance to co-trimoxazole, nalidixic acid, polymixin B and streptomycin. In PCR, SXT integrase was detected in 117 isolates and its sequence showed 99% identity notably to ICEVchInd5 from Sevagram, India, ICEVchBan5 from Bangladesh and VC1786ICE sequence from Haiti outbreak among others. Antibiotic resistance traits corresponding to SXT element were transferred from the parent Vibrio isolate to the recipient E. coli XL-1 Blue cells during conjugation. Double-mismatch-amplification mutation assay (DMAMA) revealed the presence of Haitian type ctxB allele of genotype 7 in 55 isolates and the classical ctxB allele of genotype 1 in 59 isolates. Analysis of topoisomerase sequences revealed the presence of mutation Ser83 → Ile in gyrA and Ser85→ Leu in parC. This clearly showed the circulation of SXT-containing V. cholerae as causative agent for cholera in Kolkata.

Conclusions

There was predominance of SXT element in these clinical isolates from Kolkata region which also accounted for their antibiotic resistance phenotype typical of this element. DMAMA PCR showed them to be a mixture of isolates with different ctxB alleles like classical, El Tor and Haitian variants.  相似文献   

6.
Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infection and engage in a coordinated genetic and molecular cascade to colonize the urinary tract. Disrupting the assembly and/or function of virulence factors and bacterial biofilms has emerged as an attractive target for the development of new therapeutic strategies to prevent and treat urinary tract infection, particularly in the era of increasing antibiotic resistance among human pathogens. UPEC vary widely in their genetic and molecular phenotypes and more data are needed to understand the features that distinguish isolates as more or less virulent and as more robust biofilm formers or poor biofilm formers. Curli are extracellular functional amyloid fibers produced by E. coli that contribute to pathogenesis and influence the host response during urinary tract infection (UTI). We have examined the production of curli and curli-associated phenotypes including biofilm formation among a specific panel of human clinical UPEC that has been studied extensively in the mouse model of UTI. Motility, curli production, and curli-associated biofilm formation attached to plastic were the most prevalent behaviors, shared by most clinical isolates. We discuss these results in the context on the previously reported behavior and phenotypes of these isolates in the murine cystitis model in vivo.  相似文献   

7.
Enterococci isolated from a bison population on a native tall-grass prairie preserve in Kansas were characterized and compared to enterococci isolated from pastured cattle. The species diversity was dominated by Enterococcus casseliflavus in bison (62.4%), while Enterococcus hirae was the most common isolate from cattle (39.7%). Enterococcus faecalis was the second most common species isolated from bison (16%). In cattle, E. faecalis and Enterococcus faecium were isolated at lower percentages (3.2% and 1.6%, respectively). No resistance to ampicillin, chloramphenicol, gentamicin, or high levels of vancomycin was detected from either source. Tetracycline and erythromycin resistance phenotypes, encoded by tetO and ermB, respectively, were common in cattle isolates (42.9% and 12.7%, respectively). A significant percentage of bison isolates (8% and 4%, respectively) were also resistant to these two antibiotics. The tetracycline resistance genes from both bison and cattle isolates resided on mobile genetic elements and showed a transfer frequency of 10−6 per donor, whereas erythromycin resistance was not transferable. Resistance to ciprofloxacin was found to be higher in enterococci from bison (14.4%) than in enterococci isolated from cattle (9.5%). The bison population can serve as a sentinel population for studying the spread and origin of antibiotic resistance.  相似文献   

8.
Aeromonas spp. are ubiquitous aquatic bacteria that cause serious infections in both poikilothermic and endothermic animals, including humans. Clinical isolates have shown an increasing incidence of antibiotic and antimicrobial drug resistance since the widespread use of antibiotics began. A total of 282 Aeromonas pure cultures were isolated from both urban and rural playa lakes in the vicinity of Lubbock, Texas, and several rivers in West Texas and New Mexico. Of these, at least 104 were subsequently confirmed to be independent isolates. The 104 isolates were identified by Biolog and belonged to 11 different species. The MICs of six metals, one metalloid, five antibiotics, and two antimicrobial drugs were determined. All aeromonads were sensitive to chromate, cobalt, copper, nickel, zinc, cefuroxime, kanamycin, nalidixic acid, ofloxacin, tetracycline, and sulfamethoxazole. Low incidences of trimethoprim resistance, mercury resistance, and arsenite resistance were found. Dual resistances were found in 5 of the 104 Aeromonas isolates. Greater numbers of resistant isolates were obtained from samples taken in March versus July 2002 and from sediment versus water. Plasmids were isolated from selected strains of the arsenite- and mercury-resistant organisms and were transformed into Escherichia coli XL1-Blue MRF′. Acquisition of the resistance phenotypes by the new host showed that these resistance genes were carried on the plasmids. Mercury resistance was found to be encoded on a conjugative plasmid. Despite the low incidence of resistant isolates, the six playa lakes and three rivers that were sampled in this study can be considered a reservoir for antimicrobial resistance genes.  相似文献   

9.
Isoniazid (INH) is a highly effective drug used in the treatment and prophylaxis of Mycobacterium tuberculosis infections. Resistance to INH in clinical isolates has been correlated with mutations in the inhA, katG, and ahpC genes. In this report, we describe a new mechanism for INH resistance in Mycobacterium smegmatis. Mutations that reduce NADH dehydrogenase activity (Ndh; type II) cause multiple phenotypes, including (i) coresistance to INH and a related drug, ethionamide; (ii) thermosensitive lethality; and (iii) auxotrophy. These phenotypes are corrected by expression of one of two enzymes: NADH dehydrogenase and the NADH-dependent malate dehydrogenase of the M. tuberculosis complex. The genetic data presented here indicate that defects in NADH oxidation cause all of the mutant traits and that an increase in the NADH/NAD+ ratio confers INH resistance.  相似文献   

10.
Antibiotic resistance has reached alarming levels in many clinically-relevant human pathogens, and there is an increasing clinical need for new antibiotics active on drug-resistant Gram-negative pathogens who rapidly evolve towards pandrug resistance phenotypes. Here, we report on two related classes of guanidinic compounds endowed with antibacterial activity. The two best compounds (9a and 13d) exhibited the most potent antibacterial activity with MIC values ranging 0.12–8 μg/ml with most tested pathogens, including both Gram-positive and Gram-negative bacteria. Interestingly, MIC values were not affected (1–8 μg/ml) when measured using recent clinical isolates with various antibiotic resistance determinants. The results reported herein identify guazatine derivatives as an interesting starting point for the optimization of a potentially novel class of antibacterial agents.  相似文献   

11.

Background

Acinetobacter baumannii is an important nosocomial pathogen that poses a serious health threat to immune-compromised patients. Due to its rapid ability to develop multidrug resistance (MDR), A. baumannii has increasingly become a focus of attention worldwide. To better understand the genetic variation and antibiotic resistance mechanisms of this bacterium at the genomic level, we reported high-quality draft genome sequences of 8 clinical isolates with various sequence types and drug susceptibility profiles.

Results

We sequenced 7 MDR and 1 drug-sensitive clinical A. baumannii isolates and performed comparative genomic analysis of these draft genomes with 16 A. baumannii complete genomes from GenBank. We found a high degree of variation in A. baumannii, including single nucleotide polymorphisms (SNPs) and large DNA fragment variations in the AbaR-like resistance island (RI) regions, the prophage and the type VI secretion system (T6SS). In addition, we found several new AbaR-like RI regions with highly variable structures in our MDR strains. Interestingly, we found a novel genomic island (designated as GIBJ4) in the drug-sensitive strain BJ4 carrying metal resistance genes instead of antibiotic resistance genes inserted into the position where AbaR-like RIs commonly reside in other A. baumannii strains. Furthermore, we showed that diverse antibiotic resistance determinants are present outside the RIs in A. baumannii, including antibiotic resistance-gene bearing integrons, the blaOXA-23-containing transposon Tn2009, and chromosomal intrinsic antibiotic resistance genes.

Conclusions

Our comparative genomic analysis revealed that extensive genomic variation exists in the A. baumannii genome. Transposons, genomic islands and point mutations are the main contributors to the plasticity of the A. baumannii genome and play critical roles in facilitating the development of antibiotic resistance in the clinical isolates.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1163) contains supplementary material, which is available to authorized users.  相似文献   

12.
Genomic dissection of antibiotic resistance in bacterial pathogens has largely focused on genetic changes conferring growth above a single critical concentration of drug. However, reduced susceptibility to antibiotics—even below this breakpoint—is associated with poor treatment outcomes in the clinic, including in tuberculosis. Clinical strains of Mycobacterium tuberculosis exhibit extensive quantitative variation in antibiotic susceptibility but the genetic basis behind this spectrum of drug susceptibility remains ill-defined. Through a genome wide association study, we show that non-synonymous mutations in dnaA, which encodes an essential and highly conserved regulator of DNA replication, are associated with drug resistance in clinical M. tuberculosis strains. We demonstrate that these dnaA mutations specifically enhance M. tuberculosis survival during isoniazid treatment via reduced expression of katG, the activator of isoniazid. To identify DnaA interactors relevant to this phenotype, we perform the first genome-wide biochemical mapping of DnaA binding sites in mycobacteria which reveals a DnaA interaction site that is the target of recurrent mutation in clinical strains. Reconstructing clinically prevalent mutations in this DnaA interaction site reproduces the phenotypes of dnaA mutants, suggesting that clinical strains of M. tuberculosis have evolved mutations in a previously uncharacterized DnaA pathway that quantitatively increases resistance to the key first-line antibiotic isoniazid. Discovering genetic mechanisms that reduce drug susceptibility and support the evolution of high-level drug resistance will guide development of biomarkers capable of prospectively identifying patients at risk of treatment failure in the clinic.  相似文献   

13.
Of 3,063 ready-to-eat food samples tested, 91 (2.97%) were positive for Listeria monocytogenes, and lineage 1 strains outnumbered lineage 2 strains 57 to 34. Seventy-one isolates (78%) exhibited multiple antibiotic resistance, and an L. monocytogenes-specific bacteriophage cocktail lysed 65 of 91 (71%) isolates. Determining phage, acid, and antibiotic susceptibility phenotypes enabled us to identify differences among strains which were otherwise indistinguishable by conventional methods.  相似文献   

14.
Clinical utility of rifabutin 1 (RBT), a potent antibiotic used in multidrug regimens for tuberculosis (TB) as well as for infections caused by Mycobacterium avium complex (MAC), has been hampered due to dose-limiting toxicity. RBT analogs 2–11 were synthesized and evaluated against M. avium 1581 and Mycobacterium tuberculosis susceptible and resistant strains in vitro. A selection of candidates were also assayed against non-replicating persistent (NRP) M. tuberculosis. Subsequent in vivo studies with the best preclinical candidate drugs 5 and 8, in a model of progressive pulmonary tuberculosis of Balb/C mice infected either with H37Rv drug–sensible strain or with multidrug resistant (MDR) clinical isolates, resistant to all primary antibiotics including rifampicin, were performed. The results disclosed here suggest that 5 and 8 have potential for clinical application.  相似文献   

15.
Dissemination of antibiotic resistance is a major concern, especially in aquatic environments, where pollution contributes for resistant bacteria selection. These strains may have serious health implications, especially for endangered species, including the sea turtles’ hawksbill Eretmochelys imbricata and green turtles Chelonia mydas.We aimed to evaluate the presence of antibiotic resistant pseudomonads in wild sea turtles from Príncipe Island, São Tomé and Príncipe, Guinea Gulf. Isolates were obtained from oral and cloacal swabs of free-living turtles by conventional techniques. Pseudomonads screening was performed by multiplex-PCR (oprI/oprL) and biochemical identification and antibiotic resistance profiling were achieved using Vitek2. All pseudomonad isolates were genotyped by Rep-PCR.Thirteen isolates were oprI-positive and classified as pseudomonads, eight from the genus Pseudomonas with the species P. aeruginosa, P. stutzeri, and P. mendocina, and five co-isolated Alcaligenes faecalis. The P. aeruginosa isolate was also oprL-positive. Regarding isolates susceptibility profile, 38.5% were susceptible to all antibiotics tested, and multidrug resistant (MDR) strains were not identified. DNA fingerprinting did not show any specific clonal-cluster similarity.Data on the worldwide incidence of antibiotic resistance among wildlife is still very scarce, especially concerning remote tropical areas. Since Pseudomonas genus has emerged as a group of increasingly reported opportunistic microorganisms in human and veterinary medicine with high resistance levels, it could be used as a tool for environmental resistance surveillance, particularly considering their ubiquity.  相似文献   

16.
The aim of this study was to investigate the prevalence and genetic basis of multidrug resistance in Chryseobacterium indologenes from seawater and marine invertebrates used for human consumption, in Ka?tela Bay, Adriatic Sea, Croatia. Out of 16 samples of seawater, Mediterranean mussel (Mytilus galloprovincialis Lam.), Rayed Mediterranean limpets (Patella caerulea L.) and Purple sea urchins (Paracentrotus lividus Lam.) collected, 15 were positive for C. indologenes. In total, 41 isolates were randomly selected and tested for antibiotic susceptibility by disc-diffusion and broth microdilution methods. PCR was used to detect alleles encoding extended-spectrum (ESBLs) and metallo-β-lactamases (MBLs). The clonality of β-lactamase-producing strains was evaluated by random amplified polymorphic DNA (RAPD) analysis. All C. indologenes isolates showed multiple resistance to at least 9 out of 16 antibiotics tested. Lowest resistance rates were found for piperacillin (9.7 %) and ciprofloxacin (24.4 %), whereas only piperacillin/tazobactam and trimethoprim/sulfamethoxazole showed 100 % activity. More than half of isolates carried bla IND-type gene, including 2 isolates carrying bla IND-2 and 21 carrying bla IND-7, that was identified as a major MBL genotype in isolates from Adriatic Sea. RAPD typing of IND-producing isolates revealed 6 major groups with no predominant clone in population. The presence of multidrug resistant and IND-producing C. indologenes in marine environment, including marine fauna, pose a risk for transmitting this opportunistic pathogen to humans through recreation or consummation of seafood. In addition, the antibiotic susceptibility test results have practical relevance for empirical treatment of C. indologenes infections.  相似文献   

17.

Background

Surgical-site infection is the most frequent health care-associated infection in the developing world, with a strikingly higher prevalence than in developed countries We studied the prevalence of resistance to antibiotics in Enterobacteriaceae isolates from surgical-site infections collected in three major tertiary care centres in Bangui, Central African Republic. We also studied the genetic basis for antibiotic resistance and the genetic background of third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae.

Results

Between April 2011 and April 2012, 195 patients with nosocomial surgical-site infections were consecutively recruited into the study at five surgical departments in three major tertiary care centres. Of the 165 bacterial isolates collected, most were Enterobacteriaceae (102/165, 61.8%). Of these, 65/102 (63.7%) were 3GC-R, which were characterized for resistance gene determinants and genetic background. The blaCTX-M-15 and aac(6′)-Ib-cr genes were detected in all strains, usually associated with qnr genes (98.5%). Escherichia coli, the most commonly recovered species (33/65, 50.8%), occurred in six different sequence types, including the pandemic B2-O25b-ST131 group (12/33, 36.4%). Resistance transfer was studied in one representative strain of the resistance gene content in each repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus sequence-PCR banding pattern. Plasmids were characterized by PCR-based replicon typing and sub-typing schemes. In most isolates (18/27, 66.7%), blaCTX-M-15 genes were found in incompatibility groups F/F31:A4:B1 and F/F36:A4:B1 conjugative plasmids. Horizontal transfer of both plasmids is probably an important mechanism for the spread of blaCTX-M-15 among Enterobacteriaceae species and hospitals. The presence of sets of antibiotic resistance genes in these two plasmids indicates their capacity for gene rearrangement and their evolution into new variants.

Conclusions

Diverse modes are involved in transmission of resistance, plasmid dissemination probably playing a major role.  相似文献   

18.
The goal of this study was to follow ceftiofur-treated and untreated cattle in a normally functioning dairy to examine enteric Escherichia coli for changes in antibiotic resistance profiles and genetic diversity. Prior to treatment, all of the bacteria cultured from the cows were susceptible to ceftiofur. Ceftiofur-resistant E. coli was only isolated from treated cows during and immediately following the cessation of treatment, and the 12 blaCMY-2-positive isolates clustered into two genetic groups. E. coli bacterial counts dropped significantly in the treated animals (P < 0.027), reflecting a disappearance of the antibiotic-susceptible strains. The resistant bacterial population, however, did not increase in quantity within the treated cows; levels stayed low and were overtaken by a returning susceptible population. There was no difference in the genetic diversities of the E. coli between the treated and untreated cows prior to ceftiofur administration or after the susceptible population of E. coli returned in the treated cows. A cluster analysis of antibiotic susceptibility profiles resulted in six clusters, two of which were multidrug resistant and were comprised solely of isolates from the treated cows immediately following treatment. The antibiotic treatment provided a window to detect the presence of ceftiofur-resistant E. coli but did not appear to cause its emergence or result in its amplification. The finding of resistant isolates following antibiotic treatment is not sufficient to estimate the strength of selection pressure nor is it sufficient to demonstrate a causal link between antibiotic use and the emergence or amplification of resistance.  相似文献   

19.

Background

Quinolones are potent broad-spectrum bactericidal agents increasingly employed also in resource-limited countries. Resistance to quinolones is an increasing problem, known to be strongly associated with quinolone exposure. We report on the emergence of quinolone resistance in a very remote community in the Amazon forest, where quinolones have never been used and quinolone resistance was absent in 2002.

Methods

The community exhibited a considerable level of geographical isolation, limited contact with the exterior and minimal antibiotic use (not including quinolones). In December 2009, fecal carriage of antibiotic resistant Escherichia coli was investigated in 120 of the 140 inhabitants, and in 48 animals reared in the community. All fluoroquinolone-resistant isolates were genotyped and characterized for the mechanisms of plasmid- and chromosomal-mediated quinolone resistance.

Principal Findings

Despite the characteristics of the community remained substantially unchanged during the period 2002–2009, carriage of quinolone-resistant E. coli was found to be common in 2009 both in humans (45% nalidixic acid, 14% ciprofloxacin) and animals (54% nalidixic acid, 23% ciprofloxacin). Ciprofloxacin-resistant isolates of human and animal origin showed multidrug resistance phenotypes, a high level of genetic heterogeneity, and a combination of GyrA (Ser83Leu and Asp87Asn) and ParC (Ser80Ile) substitutions commonly observed in fluoroquinolone-resistant clinical isolates of E. coli.

Conclusions

Remoteness and absence of antibiotic selective pressure did not protect the community from the remarkable emergence of quinolone resistance in E. coli. Introduction of the resistant strains from antibiotic-exposed settings is the most likely source, while persistence and dissemination in the absence of quinolone exposure is likely mostly related with poor sanitation. Interventions aimed at reducing the spreading of resistant isolates (by improving sanitation and water/food safety) are urgently needed to preserve the efficacy of quinolones in resource-limited countries, as control strategies based only on antibiotic restriction policies are unlikely to succeed in those settings.  相似文献   

20.
The purpose of this study was to characterize the antibiotic resistance profiles of Enterococcus species isolated from fresh produce harvested in the southwestern United States. Among the 185 Enterococcus isolates obtained, 97 (52%) were Enterococcus faecium, 38 (21%) were Enterococcus faecalis, and 50 (27%) were other Enterococcus species. Of human clinical importance, E. faecium strains had a much higher prevalence of resistance to ciprofloxacin, tetracycline, and nitrofurantoin than E. faecalis. E. faecalis strains had a low prevalence of resistance to antibiotics used to treat E. faecalis infections of both clinical and of agricultural relevance, excluding its intrinsic resistance patterns. Thirty-four percent of the isolates had multiple-drug-resistance patterns, excluding intrinsic resistance. Data on the prevalence and types of antibiotic resistance in Enterococcus species isolated from fresh produce may be used to describe baseline antibiotic susceptibility profiles associated with Enterococcus spp. isolated from the environment. The data collected may also help elucidate the role of foods in the transmission of antibiotic-resistant strains to human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号