首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary and secondary seed dispersal was investigated for the glacier lily Erythronium grandiflorum in the Colorado Rocky Mountains. These heavy seeds have no obvious adaptations for biotic or abiotic dispersal, but can be thrown short distances when the dehiscent fruits are shaken by wind. We used sticky traps to measure primary transport of seeds up to 1 m away from individual plants. A seed cafeteria experiment examined the role of ants and rodents in secondary seed transport. Primary dispersal by wind was positively skewed and median transport distances were influenced by variation in plant height. Secondary dispersal was negligible compared to Viola nuttallii, an elaiosome-bearing species. Thus, seed dispersal was highly restricted in E. grandiflorum, and a 1 m radius encompassed the modal section of the seed dispersal curve. The seed dispersal component of gene flow was quantified and combined with previous measurements of pollen flow to yield a more complete estimate of Wright's neighborhood size, N e, for E. grandiflorum. The lack of a special seed dispersal mechanism in E. grandiflorum is discussed in terms of a source-sink model for seedling establishment with respect to distance from the parental plants.  相似文献   

2.
Aim Natural and human‐induced differences in frugivore assemblages can influence the seed dispersal distances of trees. An important issue in seed dispersal systems is to understand whether differences in seed dispersal distances also affect the genetic structure of mature trees. One possible approach to test for a relationship between seed dispersal and the genetic structure of mature trees is to compare the genetic structure of two closely related tree species between two biogeographical regions that differ in frugivore assemblages and seed dispersal distances. Previous studies on two Commiphora species revealed that Commiphora guillauminii in Madagascar has a much lower seed dispersal distance than Commiphora harveyi in South Africa. We tested whether the lower seed dispersal distance might have caused decreased gene flow, resulting in a stronger genetic structure in Madagascar than in South Africa. Location Madagascar and South Africa. Methods Using amplified fragment length polymorphism markers we investigated the genetic structure of 134 trees in Madagascar and 158 trees in South Africa at a local and a regional spatial scale. Results In concordance with our hypothesis, kinship analysis suggests that gene flow was restricted mostly to 3 km in Madagascar and to 30 km in South Africa. At the local spatial scale, the genetic differentiation among groups of trees within sample sites was marginally significantly higher in Madagascar (FST = 0.069) than in South Africa (FST = 0.021). However, at a regional spatial scale genetic differentiation was lower in Madagascar (FST = 0.053) than in South Africa (FST = 0.163). Main conclusions Our results show that lower seed dispersal distances of trees were linked to higher genetic differentiation of trees only at a local spatial scale. This suggests that seed dispersal affects the genetic population structure of trees at a local, but not at a regional, spatial scale.  相似文献   

3.
Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long‐standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal‐dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long‐distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long‐distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine‐scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine‐scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (N em) was associated with higher effective number of pollen sources (N ep), higher effective number of parents (N e) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (N em) at frugivore seed deposition sites in driving emergent patterns of fine‐scale genetic diversity and structure.  相似文献   

4.
The natural regeneration of tree species depends on seed and pollen dispersal. To assess whether limited dispersal could be critical for the sustainability of selective logging practices, we performed parentage analyses in two Central African legume canopy species displaying contrasted floral and fruit traits: Distemonanthus benthamianus and Erythrophleum suaveolens. We also developed new tools linking forward dispersal kernels with backward migration rates to better characterize long‐distance dispersal. Much longer pollen dispersal in D. benthamianus (mean distance dp = 700 m, mp = 52% immigration rate in 6 km2 plot, = 7% selfing rate) than in E. suaveolens (dp = 294 m, mp = 22% in 2 km2 plot, = 20%) might reflect different insect pollinators. At a local scale, secondary seed dispersal by vertebrates led to larger seed dispersal distances in the barochorous E. suaveolens (ds = 175 m) than in the wind‐dispersed D. benthamianus (ds = 71 m). Yet, seed dispersal appeared much more fat‐tailed in the latter species (15%–25% seeds dispersing >500 m), putatively due to storm winds (papery pods). The reproductive success was correlated to trunk diameter in E. suaveolens and crown dominance in D. benthamianus. Contrary to D. benthamianus, E. suaveolens underwent significant assortative mating, increasing further the already high inbreeding of its juveniles due to selfing, which seems offset by strong inbreeding depression. To achieve sustainable exploitation, seed and pollen dispersal distances did not appear limiting, but the natural regeneration of E. suaveolens might become insufficient if all trees above the minimum legal cutting diameter were exploited. This highlights the importance of assessing the diameter structure of reproductive trees for logged species.  相似文献   

5.
Boltonia decurrens(Asteraceae), a federally listed, threatened floodplain species, requires regular flooding for suitable habitat and seed dispersal. Flood suppression and habitat destruction have resulted in fewer than 25 populations remaining throughout its 400 km range. Because individual populations are widely interspaced (>10 km) and subject to frequent extinction and colonization, seed dispersal along the river, not pollen flow, is likely the primary determinant of population genetic structure. We used neutral genetic markers (isozymes) assayed for fourteen populations to determine which demographic processes contribute to the genetic structure of B. decurrens. Significant genetic differentiation was detected among populations (F ST=0.098, P< 0.05) but not among regions (F RT=0.013, P> 0.05), suggesting that long-distance dispersal events occur and involve seed from a small number of populations. Correspondingly, we found no evidence of isolation by distance, and admixture analyses indicate that colonization events involve seed from 3 to 5 source populations. Individual populations exhibited high levels of fixation (mean F IS=0.192, P< 0.05), yet mean population outcrossing rates were high (t m=0.87–0.95) and spatial autocorrelation analyses revealed no fine-scale within population structure, indicating that inbreeding alone cannot explain the observed fixation. Rather, genetic bottlenecks, detected for 12 of 14 populations, and admixture at population founding may be important sources of fixation. These observations are consistent with a metapopulation model and confirm the importance of regular flooding events, capable of producing suitable habitat and dispersing seed long distances, to the long-term persistence of B. decurrens.  相似文献   

6.
The mutualism between fig plants and fig wasps has been recognized as one of the most specialized systems of symbiosis. Figs are pollinated by their highly specific pollinating fig wasps, and the pollinating fig wasps are raised within the syconia of figs. Recent studies indicated a difference between monoecious and dioecious figs in the dispersal range of pollinating wasps, which has potential consequences for gene flow. In this study, we detected the gene-flow pattern of the dioecious climbing fig, Ficus pumila L. var. pumila, at both local and regional scales. At the local scale, spatial autocorrelation analysis indicated strong genetic structure at short distances, a pattern of limited gene flow. This result was also supported by a high inbreeding coefficient (F IS = 0.287) and significant substructuring (F ST = 0.060; P < 0.001). Further analysis indicated that the effective gene dispersal range was 1,211 m, and the relative contribution of seed dispersal was smaller than that of pollen dispersal. The inferred effective range of pollen dispersal ranged from 989 to 1,712 m, while the effective seed dispersal range was less than 989 m. Lack of long-distance dispersal agents may explain the limited seed dispersal. The high density of receptive fig trees was the most likely explanation for limited pollen dispersal, and the position of syconia and relatively low wind speed beneath the canopy may contribute to this phenomenon. At the regional scale, significant negative correlations (kinship coefficient F ij ranging from −0.038 to −0.071) existed in all comparisons between the studied population and other populations, and the assignment test grouped almost all individuals of the studied population into a distinct cluster. Asynchronous flowering on the regional scale, which provides a barrier for the pollinating wasps to fly from the studied population to the other populations, is probably responsible for the limited gene flow on the regional scale.  相似文献   

7.
Pollen and seed dispersal are key processes affecting the demographic and evolutionary dynamics of plant species and are also important considerations for the sustainable management of timber trees. Through direct and indirect genetic analyses, we studied the mating system and the extent of pollen and seed dispersal in an economically important timber species, Entandrophragma cylindricum (Meliaceae). We genotyped adult trees, seeds and saplings from a 400‐ha study plot in a natural forest from East Cameroon using eight nuclear microsatellite markers. The species is mainly outcrossed (= 0.92), but seeds from the same fruit are often pollinated by the same father (correlated paternity, rp = 0.77). An average of 4.76 effective pollen donors (Nep) per seed tree contributes to the pollination. Seed dispersal was as extensive as pollen dispersal, with a mean dispersal distance in the study plot approaching 600 m, and immigration rates from outside the plot to the central part of the plot reaching 40% for both pollen and seeds. Extensive pollen‐ and seed‐mediated gene flow is further supported by the weak, fine‐scale spatial genetic structure (Sp statistic = 0.0058), corresponding to historical gene dispersal distances (σg) reaching approximately 1,500 m. Using an original approach, we showed that the relatedness between mating individuals (Fij = 0.06) was higher than expected by chance, given the extent of pollen dispersal distances (expected Fij = 0.02 according to simulations). This remarkable pattern of assortative mating could be a phenomenon of potentially consequential evolutionary and management significance that deserves to be studied in other plant populations.  相似文献   

8.
宋楠  李新蓉  狄林楠 《生态学报》2019,39(7):2462-2469
裸果木(Gymnocarpos przewalskii)是亚洲中部荒漠区少有的第三纪孑遗物种,由于气候变化及人为干扰,其自然种群分布范围不断缩小。种子扩散作为植物生活史过程中的重要阶段,不仅对物种生存及其多样性至关重要,还影响物种分布范围和局部丰度。2015年和2016年分别在新疆哈密地区,采用布设种子收集器的方法,对其自然种群种子扩散的时空动态进行了定点连续观测。结果表明:该物种于当年6月上旬开始扩散,2015年略早于2016年。每年种子扩散持续时间约两个月,扩散趋势为单峰曲线,且呈集中大量扩散的模式,扩散高峰期与当年初次月降水高峰期吻合;在顺风的正南和东南方向上,种子扩散密度大且距离远;种子扩散主要集中在母株冠幅下,随着距母株距离的增加,种子扩散密度减少,二者间存在极显著的负相关性(P0.01),由于裸果木枝条繁多,对风力强度起到了一定的阻碍作用,可能是造成种子集中扩散在母株下的原因。裸果木种子扩散受外界环境(降水、风向)和自身因素等方面的影响,当种子在大量降水前完成扩散,将有利于种子在适宜的微生境萌发,是对多风、干旱的恶劣生境的一种长期适应。  相似文献   

9.
Predicting responses of vegetation to environmental factors in human-altered tropical ecosystems requires an understanding of the controls on plant population expansion across landscapes (i.e., long-distance dispersal) as well as of factors affecting recruitment at local scales (i.e., microsite conditions). We studied the roles of light availability, habitat type, soil disturbance, and seed dispersal in a selectively logged forest in lowland Bolivia where the exotic forage grass Urochloa (Panicum) maxima is abundant on roads and log landings but does not invade felling gaps or unlogged forest. Shade-house trials and seed addition experiments with U. maxima revealed that this C4 grass thrives in high light but also grows in partial shade (10% full sun, but not 1% full sun), and that felling gaps, but not undisturbed forest, are suitable for grass establishment. To determine if seed dispersal by logging vehicles explains the discrepancy between actual and potential grass recruitment sites, we collected grass seeds that fell from trucks onto log landings located long distances (>500 m) from established grass populations. Trucks dispersed an estimated 1800 alien grass seeds per log landing during the early dry season; automobiles also transported seeds of grass (135 seeds/vehicle). The seeds collected (and relative abundances) were the exotics U. (Panicum) maxima (97%) and Urochloa (Brachiaria) brizantha (2%), and the pan-tropical weeds Sorghum halapense (1%) and Rottboellia cochinchinensis (0.2%). Grasses invade this forest where disturbance coincides with seed dispersal by motor vehicles, while dispersal limitation apparently prevents invasion of many sites otherwise suitable for grass recruitment (i.e., felling and natural gaps).  相似文献   

10.
We investigated pollen dispersal and breeding structure in the tropical tree species Caryocar brasiliense Camb. (Caryocaraceae), using genetic data from ten microsatellite loci. All adult trees (101) within a patch of 8.3 ha were sampled, and from these adults 18 open-pollinated maternal progeny arrays were analyzed (280 seeds from 265 fruits). Most fruits presented only one seed (median equal to 1.000) and mean number of ripened seeds per fruit was 1.053 (SD = 0.828). Our results showed that C. brasiliense presents a mixed-mating system, with 11.4% of self-pollination, multilocus outcrossing rate of t m = 0.891 ± 0.025, and high probability of full-sibship within progeny arrays (r p = 0.135 ± 0.032). Outcrossing rate and self-pollination varied significantly among mother trees. We could detect a maximum pollen dispersal distance of ∼500 m and a mean pollen dispersal distance of ∼132 m. However, most pollination events (80%) occurred at distances less than 200 m. Our results also indicated that pollen dispersal is restricted to a neighborhood of 5.4 ha with rare events of immigration (∼1% N e m = 0.35). C. brasiliense also presents a significant but weak spatial genetic structure (Sp = 0.0116), and extension of pollen dispersal distance was greater than seed dispersal (N b = 86.20 m). These results are most likely due to the foraging behavior of pollinators that may have limited flight range. The highly within-population synchronous flowering, high population density, and clumped distribution reinforce pollinator behavior and affect residence time leading to a short-distance pollen dispersal.  相似文献   

11.
Latitude, seed predation and seed mass   总被引:12,自引:0,他引:12  
Aim We set out to test the hypothesis that rates of pre‐ and post‐dispersal seed predation would be higher towards the tropics, across a broad range of species from around the world. We also aimed to quantify the slope and predictive power of the relationship between seed mass and latitude both within and across species. Methods Seed mass, pre‐dispersal seed predation and post‐dispersal seed removal data were compiled from the literature. Wherever possible, these data were combined with information regarding the latitude at which the data were collected. Analyses were performed using both cross‐species and phylogenetic regressions. Results Contrary to expectations, we found no significant relationship between seed predation and latitude (log10 proportion of seeds surviving predispersal seed predation vs. latitude, P = 0.63; R2 = 0.02; n = 122 species: log10 proportion of seeds remaining after postdispersal seed removal vs. latitude, P = 0.54; R2 = 0.02; n = 205 species). These relationships remained non‐significant after variation because of seed mass was accounted for. We also found a very substantial (R2 = 0.21) relationship between seed mass and latitude across 2706 species, with seed mass being significantly higher towards the tropics. Within‐species seed mass decline with latitude was significant, but only about two‐sevenths, as rapid as the cross‐species decline with latitude. Results of phylogenetic analyses were very similar to cross‐species analyses. We also demonstrated a positive relationship between seed mass and development time across ten species from dry sclerophyll woodland in Sydney (P < 0.001; R2 = 0.77; Standardized Major Axis slope = 0.14). These data lend support to the hypothesis that growing period might affect the maximum attainable seed mass in a given environment. Main conclusions There was no evidence that seed predation is higher towards the tropics. The strong relationship between seed mass and latitude shown here had been observed in previous studies, but had not previously been quantified at a global scale. There was a tenfold reduction in mean seed mass for every c. 23° moved towards the poles, despite a wide range of seed mass within each latitude.  相似文献   

12.
In flying insects, there is frequently a lack of congruence between empirical estimates of local demographic parameters and the prediction that differentiation between populations should decrease with increasing dispersal, a puzzling phenomenon known as Slatkin’s Paradox. Here, we generalize Slatkin’s Paradox to other taxa, drawing from available information on dispersal to predict the relative importance of pollen vs. seed migration in structuring broad‐scale patterns of genetic variation in Ficus hirta, a dioecious fig whose pollen is dispersed by minute, species‐specific fig wasps and whose seeds are disseminated by a variety of vagile vertebrates (especially bats and birds). Local‐scale observational and genetic studies of dioecious understory figs suggest comparable rates of pollen and seed migration. In contrast, we found unusually low nuclear differentiation (FST = 0.037, RST = 0.074) and high chloroplast differentiation (GST = 0.729, NST = 0.798) among populations separated by up to 2850 km, leading us to reject the hypothesis of equal pollen and seed migration rates and to obtain an equilibrium estimate of the ratio of pollen to seed migration of r = 16.2–36.3. We reconcile this example of Slatkin’s Paradox with previously published data for dioecious figs and relate it to the picture of exceptionally long‐distance wasp‐mediated pollen dispersal that is emerging for large monoecious fig trees. More generally, we argue that Slatkin’s Paradox is a general phenomenon and suggest it may be common in plants and animals.  相似文献   

13.
Recognition that tree recruitment depends on the balance between seed arrival and seedling survival has led to a surge of interest in seed‐dispersal limitation and seedling‐establishment limitation in primary forests. Virtually unaddressed are comparisons of this balance in mature and early successional habitats. We assessed seed rain and seedling recruitment dynamics of tree species in primary forest, secondary forest and pasture released from grazing in a tropical agricultural landscape. Seed to seedling ratios (seed effectiveness; Φi) for 43 species in southern Mexico determined differences in the extent to which seeds produced seedlings by habitat, life history, and dispersal mode. Reproductive potential as estimated by the transition from seed rain to seedling recruitment, differed by habitats, and varied dramatically by life history and dispersal mode. Expected recruit densities (Eit) were higher for animal‐dispersed than wind‐dispersed species, and for non‐pioneer than pioneer species. Non‐pioneers and animal‐dispersed species had higher expected relative recruit abundance (εit) in primary forest (median of 4 seeds recruit?1) whereas in secondary forest wind‐dispersed pioneers had the highest expected relative recruit abundance (median of 16 seeds per recruit). In pastures, wind‐dispersed pioneer species were most successful with many more seeds per recruit (median of 291) than both forest habitats. Seeds per recruit (Φi) appeared to decrease with increase in seed mass for 43 species for which data were available (r = –0.55, P < 0.001). This was associated with a negative correlation of Φi with seed size in primary forest (r = –0.50, P = 0.08 for 13 species); Φi was not correlated with seed size in secondary forest (n = 16) or pasture (n = 14). Metrics of seeds per recruit, expected recruit density and expected relative recruit abundance dramatically illustrate differences in barriers to recruitment in successional habitats.  相似文献   

14.
Aim We estimated the patterns of seed deposition provided by the eyed lizard, Timon lepidus, and evaluated whether these patterns can be generalized across plant species with different traits (fruit and seed size) and spatial distributions. Location Monteagudo Island, Atlantic Islands National Park (north‐western Spain). Methods We radio‐tracked seven lizards for 14 days and estimated their home ranges using fixed kernels. We also geo‐referenced all fruit‐bearing individuals of four plant species dispersed by eyed lizards in the study area (Corema album, Osyris alba, Rubus ulmifolius and Tamus communis), measured the passage time of their seeds through the lizard gut, and estimated seed predation in four habitats (bare sand, grassland, shrub and gorse). Seed dispersal kernels were estimated using a combination of these data and were combined with seed predation probability maps to incorporate post‐dispersal seed fate (‘seed survival kernels’). Results Median seed gut‐passage times were around 52–98 h, with maximum values up to 250 h. Lizards achieved maximum displacement in their home ranges within 24–48 h. Seed predation was high (80–100% of seeds in 2 months), particularly under Corema shrub and gorse. Seed dispersal kernels showed a common pattern, with two areas of preferential seed deposition, but the importance of these varied among plant species. Interspecific differences among dispersal kernels were strongly reduced by post‐dispersal seed predation; hence, seed survival kernels of the different plant species showed high auto‐ and pairwise‐correlations at small distances (< 50 m). As a result, survival to post‐dispersal seed predation increased with dispersal distance for O. alba and T. communis, but not for C. album. Main conclusions Seed dispersal by lizards was determined primarily by the interaction between the dispersers’ home ranges and the position of the fruit‐bearing plants. As a result, seed rain shared a common template, but showed considerable variation among species, determined by their specific spatial context. Seed predation increased the spatial coherence of the seed rain of the different species, but also resulted in contrasting relationships between seed survival and dispersal distance, which may be of importance for the demographic and evolutionary processes of the plants.  相似文献   

15.
The dependence of mistletoes on few dispersers and the directed dispersal they provide is well known, yet no recent work has quantified either the effectiveness of these ‘legitimate’ dispersers, or the extent of redundancy among them. Here, I use the seed dispersal effectiveness (SDE) framework to analyze how birds (Mionectes striaticollis and Zimmerius bolivianus) contribute to mistletoe (Struthanthus acuminatus and Phthirusa retroflexa) infection in traditional mixed plantations within a humid montane forest in Bolivia. I calculated SDE for each bird–mistletoe pair and for the disperser assemblage, by estimating both the quantity and the quality of dispersal. The quantity of dispersal was measured as: (1) disperser abundance; (2) frequency of visits; and (3) number of seeds dispersed per visit, and the quality of dispersal was measured as: (1) germination percentage and speed of germination of seeds regurgitated by birds; and (2) the concordance of deposited seeds and seedling distribution patterns with adult mistletoe distribution at three scales (habitat, host, and microhabitat). Dispersers were not redundant: the more generalist species M. striaticollis dispersed more seeds, but provided lower quality seed dispersal, whereas the mistletoe specialist Z. bolivianus provided low‐quantity and high‐quality seed dispersal. Whereas S. acuminatus benefited more from the SDE of Z. bolivianus, P. retroflexa benefited from the complementary seed dispersal provided by both birds. These results demonstrate how sympatric mistletoes that share the same disperser assemblage may develop different relationships with specific vectors, and describe how the services provided by two different dispersers (one that provides high‐quality and one that provides high‐quantity dispersal) interact to shape spatial patterns of plants.  相似文献   

16.
An example from the genus Eucalyptus is used to argue that hybridization may be of evolutionary significance as a means of gene dispersal where seed dispersal is limited. A previous study of regeneration of E. risdonii and E. amygdalina indicated that the current selective regime was favoring E. risaonii. However, the dispersal of E. risdonii by seeds is shown to be limited (s, = 4.6 m). By comparison, the flow of E. risdonii genes into the range of E. amygdalina by pollen dispersal and F1 hybridization is widespread (sp = 82 m). While the actual level of hybridization is low, interspecific hybridization effectively doubles the dispersal of E. risdonii genes into the range of E. amygdalina. This pollen flow can have a significant genetic impact, since isolated hybrids or patches of abnormal phenotypes have been found 200–300 m from the species boundary. Based on lignotuber size, some of these patches appear to have been founded by F1 hybrids. The frequency of E. risdonii types in the patches appears to increase with patch size suggesting that there is selection for this phenotype in subsequent generations. E. risdonii-like individuals were recovered in the progeny from both intermediate and E. risdonii backcross phenotypes. These results suggest that E. risdonii may invade suitable habitat islands within the E. amygdalina forest, independently of seed migration, by long-distance pollen migration followed by selection for the gene combinations of the pollen parent.  相似文献   

17.
We investigated secondary dispersal of propagules of Erodiophyllum elderi (Asteraceae), a short‐lived perennial plant growing in small patches in the arid lands of southern Australia. In spite of its importance for population dynamics, secondary dispersal is a little understood process. We monitored the dispersal of 2280 large woody capitula (seed heads) released in six E. elderi patches for 9 months. Colour‐coded seed heads were located at night using UV light and their distance and direction from the release point were measured. Over the 9‐month period, more seed heads moved, and those that did, moved further in areas with high herbivore activity. Overall dispersal distance across the ground was limited to less than 30 m. Dispersal patterns were related to the topographical slope at the release site: seed heads moved further, and more dispersed on steeper slopes unless the steep slopes had sandy soil in which case seed heads were buried, caught or there was reduced sheet water flow limiting their dispersal potential. After several months, seed head dispersal virtually ceased as seed heads became stuck in the debris and soil after heavy rains or further dispersal became unlikely when seed heads reached locally low‐lying areas. Secondary dispersal patterns suggest two distinctly different influences associated with the presence of herbivores: the direct movement of seed heads by trampling from sheep (an introduced herbivore) and the indirect effect of a reduced standing biomass from grazing. Reduced vegetation cover allows seed head redistribution via sheet water flow during large rainfall events.  相似文献   

18.
Seed and pollen dispersal contribute to gene flow and shape the genetic patterns of plants over fine spatial scales. We inferred fine-scale spatial genetic structure (FSGS) and estimated realized dispersal distances in Phytelephas aequatorialis, a Neotropical dioecious large-seeded palm. We aimed to explore how seed and pollen dispersal shape this genetic pattern in a focal population. For this purpose, we genotyped 138 seedlings and 99 adults with 20 newly developed microsatellite markers. We tested if rodent-mediated seed dispersal has a stronger influence than insect-mediated pollen dispersal in shaping FSGS. We also tested if pollen dispersal was influenced by the density of male palms around mother palms in order to further explore this ecological process in large-seeded plants. Rodent-mediated dispersal of these large seeds occurred mostly over short distances (mean 34.76 ± 34.06 m) while pollen dispersal distances were two times higher (mean 67.91 ± 38.29 m). The spatial extent of FSGS up to 35 m and the fact that seed dispersal did not increase the distance at which male alleles disperse suggest that spatially limited seed dispersal is the main factor shaping FSGS and contributes only marginally to gene flow within the population. Pollen dispersal distances depended on the density of male palms, decreasing when individuals show a clumped distribution and increasing when they are scattered. Our results show that limited seed dispersal mediated by rodents shapes FSGS in P. aequatorialis, while more extensive pollen dispersal accounts for a larger contribution to gene flow and may maintain high genetic diversity. Abstract in Spanish is available with online material.  相似文献   

19.
I examined the spatial patterns of seed dispersal and postdispersal seed predation of the semidesert perennial Cryptantha flava (A. Nels.) Payson (Boraginaceae) at two sites in north-eastern Utah. Most flowers mature only one seed (nutlet) which is permanently retained within a pubescent calyx. The calyx and enclosed seed abscise from the plant as a unit. These dispersal units are effectively dispersed by wind as evidenced by the highly directional seed shadows and the long distances some of them travel (up to 31.3 m). Potential seed predators at the sites include five species of rodents, of which Peromyscus maniculatus is the most common, and two species of ants, Pogonomyrmex occidentalis and an undescribed species of Conomyrma. There were no strong spatial patterns of postdispersal seed predation. More seeds were removed from dishes placed at the bases of fruiting adults than from dishes ≥ 1.0 m away in one of three experiments. More seeds were removed from under shrubs or clumps of grass than in the open in one of four experiments. After 3–4 days, there was a consistent tendency for more seed removal from high density (75 seeds per .25 m2) quadrats than from low density (75 seeds per 6.25 m2) quadrats, but the difference was not always significant. There was a similar nonsignificant difference between high- and low-density quadrats exposed for 21 days. The pubescent calyx greatly discourages seed predation by ants, and probably also reduces predation by rodents. In addition, by increasing the surface area of the dispersal unit, the calyx may facilitate dispersal by wind.  相似文献   

20.
Seed dispersal determines a plant’s reproductive success, range expansion, and population genetic structures. Camellia japonica, a common evergreen tree in Japan, has been the subject of recent genetic studies of population structure, but its mode of seed dispersal has been assumed, without detailed study, to be barochory. The morphological and physiological features of C. japonica seeds, which are large and nutritious, suggest zoochorous dispersal, however. We compared actual distances between mother trees and seedlings with distances attributable to gravity dispersion only, to test the zoochory hypothesis of C. japonica. The animals that transport the seeds for caching were identified experimentally. We also examined the extent to which seed dispersal is affected by the behavior of animal vectors. Seed dispersal by Apodemus speciosus was confirmed by taking photographs of animals that were consuming seeds experimentally deposited on the ground. Camellia seeds hoarded by the rodents under the litter or soil were protected from drying. On the basis of microsatellite analysis of maternal tissue from the seed coat, the mother trees of 28 seedlings were identified. Maternity analysis revealed the average seed-dispersal distance from mother trees was 5.8 m±6.0 SD, a distance greater than initial dispersal by gravity alone. These results indicate that C. japonica is a zoochorous species dispersed by A. speciosus. Fifty percent of the seed dispersal occurred from mature evergreen forests to dwarf bamboo thickets. This directional seed dispersal would contribute to range expansion of C. japonica. Home range sizes of A. speciosus were 0.85 ha at most and covered with different types of vegetation, from evergreen forests to grassland. This low specificity of their microhabitat use might enhance seed dispersal to different types of vegetation.All animal experiments complied with Japanese laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号