首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The degrees of linear polarization of the Hα and Hβ lines in an ionized gas are calculated analytically, and the inverse problem of spectropolarimetry is resolved. The parameters of an anisotropic electron distribution in a hydrogen-containing plasma are determined. The dependences of the degree of linear polarization on the parameters of the electron component in an ionized gas are analyzed.  相似文献   

2.
In cyanobacteria, plastocyanin and cytochrome c 6, the alternate donor proteins to Photosystem I, can be acidic, neutral or basic; the role of electrostatics in their interaction with photosystem I varies accordingly. In order to elucidate whether these changes in the electron donors’ properties correlate with complementary changes in the docking site of the corresponding photosystem, we have investigated the kinetics of reactions between three cytochrome c 6 with isoelectric points of 5.6, 7.0 and 9.0, with Photosystem I particles from the same three genera of cyanobacteria which provided the cytochromes. The model systems compared here thus sample the full range of charge properties observed in cytochromes c 6: acidic, basic and neutral. The rate constants and dependence on ionic strength for photosystem I reduction were distinctive for each cytochrome c 6, but independent of Photosystem I. We conclude that the specific structural features of each cytochrome c 6 dictate their different kinetic behaviours, whereas the three photosystems are relatively indiscriminate in docking with the electron donors.  相似文献   

3.
Two-dimensional numerical simulations of a dc discharge in a CH4/H2/N2 mixture in the regime of deposition of nanostructured carbon films are carried out with account of the cathode electron beam effects. The distributions of the gas temperature and species number densities are calculated, and the main plasmachemical kinetic processes governing the distribution of methyl radicals above the substrate are analyzed. It is shown that the number density of methyl radicals above the substrate is several orders of magnitude higher than the number densities of other hydrocarbon radicals, which indicates that the former play a dominant role in the growth of nanostructured carbon films. The model is verified by comparing the measured optical emission profiles of the H(n ≡ 3), C 2 * , CH*, and CN* species and the calculated number densities of excited species, as well as the measured and calculated values of the discharge voltage and heat fluxes onto the electrodes and reactor walls. The key role of ion–electron recombination and dissociative excitation of H2, C2H2, CH4, and HCN molecules in the generation of emitting species (first of all, in the cold regions adjacent to the electrodes) is revealed.  相似文献   

4.
In this work, the structural, compositional, optical, and dielectric properties of Ga2S3 thin films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and ultraviolet—visible light spectrophotometry. The Ga2S3 thin films which exhibited amorphous nature in its as grown form are observed to be generally composed of 40.7 % Ga and 59.3 % S atomic content. The direct allowed transitions optical energy bandgap is found to be 2.96 eV. On the other hand, the modeling of the dielectric spectra in the frequency range of 270–1,000 THz, using the modified Drude-Lorentz model for electron-plasmon interactions revealed the electrons scattering time as 1.8 (fs), the electron bounded plasma frequency as ~0.76–0.94 (GHz) and the reduced resonant frequency as 2.20–4.60 ×1015 (Hz) in the range of 270–753 THz. The corresponding drift mobility of electrons to the terahertz oscillating incident electric field is found to be 7.91 (cm 2/Vs). The values are promising as they nominate the Ga2S3 thin films as effective candidates in thin-film transistor and gas sensing technologies.  相似文献   

5.
Metal oxide semiconductors (MOS) are important and promising materials in optoelectronics, and it has been widely used in various catalytic applications such as gas sensing due to its high reactivity with many gases. In current work, mixtures of SnO2-WO3 (1:1) were prepared to synthesize nanostructured thin films by pulsed laser deposition as gas sensors. The sensitivity of sensors was measured for a relatively low concentration (200 ppm) of NO2 gas at room temperature; sensors prepared with target exposed to (200) laser shots have higher sensitivity with a maximum value of 96.49 % at time 65 s as compared with the sensors prepared with (150) laser shots where the sensitivity has a maximum value 71.82 % at time 110 s; XRD pattern shows a better crystalline and high intensity with increasing laser shots up to 200; scanning electron microscopy (SEM) micrographs show approximate homogeneity of grains that cover the substrate without cracks and pinholes with nanoparticles fall in micro and nanometer range 50–200 nm. The values of the direct band gap were found to be 2.07143 eV for films prepared with 150 laser shots and 2.02899 eV for films prepared with 200 laser shots which have higher absorbance than the former films due to the increment in thickness and particle size. Empirical equations between sensitivity and gas exposure time have been formulated with great coincidence with the experimental data.  相似文献   

6.
The relationship between leaf photosynthetic rate (A) in a vegetation canopy and the net ecosystem CO2 exchange (NEE) over an entire ecosystem is not well understood. The aim of the present study is to assess the coordinated changes in NEE derived with eddy covariance, A measured in leaf cuvette, and their associations in a rainfed maize field. The light response-curves were estimated for the carbon assimilation rate at both the leaf and ecosystem scales. NEE and A synchronically changed throughout the day and were greater around noon and persisted longer during rapid growth periods. The leaf A had a similar pattern of daytime changes in the top, middle, and bottom leaves. Only severe leaf ageing led to a significant decline in the maximum efficiency of photosystem II (PSII) photochemistry. The greater maximum NEE was associated with a higher ecosystem quantum yield. NEE was positively and significantly correlated with the leaf A averaged based on the vertical distribution of leaf area. The finding highlights the feasibility of assessing NEE by leaf CO2 exchange because of most of experimental data obtained with leaf cuvette methods; and also implies that simultaneously enhancing leaf photosynthetic rate, electron transport rate, net carbon assimilation at whole ecosystem might play a critical role for the enhancement of crop productivity.  相似文献   

7.
The adsorption properties of common gas molecules (NO, NH3, and SO2) on the surface of 3N-graphene and Al/3N graphene fragments are investigated using density functional theory. The adsorption energies have been calculated for the most stable configurations of the molecules on the surface of 3N-graphene and Al/3N graphene fragments. The adsorption energies of Al/3N graphene-gas systems are ?220.5 kJ mol?1 for Al/3NG-NO, ?111.9 kJ mol?1 for Al/3NG-NH3, and ?347.7 kJ mol?1 for Al/3NG-SO2, respectively. Compared with the 3N-graphene fragment, the Al/3N graphene fragment has significant adsorption energy. Furthermore, the molecular orbital, density of states, and electron densities distribution were used to explore the interaction between these molecules and the surface. We found that orbital hybridization exists between these molecules and the Al/3N graphene surface, which indicates that doping Al significantly increases the interaction between the gas molecules and Al/3N graphene. In addition, compared with Li, Al can more powerfully enhance adsorption of the 3N-graphene fragment. The results indicate that Al/3N graphene can be viewed as a new nanomaterial adsorbent for NO, NH3, and SO2.  相似文献   

8.
In many coastal areas of South-East Asia, attempts have been made to revive coastal ecosystem by initiating projects that encourage planting of mangrove trees. Compared to the terrestrial trees, mangrove trees possess a higher carbon fixation capacity. It becomes a very significant option for clean development mechanism (CDM) program. However, a reliable method to estimate CO2 fixation capacity of mangrove trees has not been established. Acknowledging the above fact, we decided to set up an estimation method for the CDM program, using gas exchange analysis to estimate mangrove productivity, we put into consideration the net CO2 fixation of reforested Kandelia candel (5-, 10-, and 15-year-old stand). This was estimated by gas exchange analysis and growth curve analysis. In growth curve analysis, we drew a growth curve of a single stand using data of above- and below-ground biomass. In the gas exchange analysis, we calculated CO2 fixation capacity by (1) measuring respiration rate of each organ of stand and calculating respiratory CO2 emission from above- to below-ground biomass. (2) Measuring the single-leaf photosynthetic rate in response to light intensity and calculating the photosynthetic CO2 absorption. (3) We also developed a model for the diurnal changes in temperature, and monthly averages based on one-day estimation of CO2 absorption and emission, which we corrected by this model in order to estimate the net CO2 fixation capacity in response to temperature. Comparing the biomass accumulation of the two methods constructed for the same forest, the above-ground biomass accumulation of 10-year-old forest (34.3 ton ha−1 yr−1) estimated by gas exchange analysis was closely compared to those of growth curve analysis (26.6 ton ha−1 yr−1), suggesting that the gas exchange analysis was capable of estimating mangrove productivity. The validity of the estimated CO2 fixation capacity by the gas exchange analysis and the growth curve analysis was also discussed.  相似文献   

9.
Quantum chemistry computations were performed at the MP2 and B3LYP levels of theory using the basis sets aug-cc-pVDZ and def2-TZVPPD to study the noble gas (Ng) compounds formed by insertion of a Ng atom (Kr, Xe, Rn) into the B–H/F and N–H/F bonds of inorganic benzene B3N3H6 and its fluorine derivative B3N3F6. The geometrical structures were optimized and vibrational analysis was carried out to demonstrate these structures being local minima on the potential energy surface. The thermodynamic properties of the formation process of Ng compounds were calculated. A series of theoretical methods based on the wavefunction analysis, including NBO, AIM and ELF methods and energy decomposition analysis, was used to investigate the bonding nature of the noble gas atoms and the properties of the Ng compounds. The N–Ng bond was found to be stronger than the B–Ng bond, but the B–Ng bond is of typical covalent character and σ-donation from the Ng atom to the ring B atom makes the predominant contribution towards stability of the B-Ng bond. NICS calculation shows that these Ng-containing compounds are of weak π-aromaticity.  相似文献   

10.
A field study was performed on triticale, field bean, maize and amaranth, to find differences between studied species in physiological alterations resulting from progressive response as injuries and/or acclimation to long-term soil drought during various stages of plant development. The measurements of leaf water potential, electrolyte leakage, chlorophyll a fluorescence, leaf gas exchange and yield analysis were done. A special emphasis was given to the measurements of the blue, green, red and far-red fluorescence. Beside, different ratios of the four fluorescence bands (red/far-red: F 690/F 740, blue/red: F 440/F 690, blue/far-red: F 440/F 740 and blue/green: F 440/F 520) were calculated. Based on both yield analysis and measurements of physiological processes it can be suggested that field bean and maize responded with better tolerance to the water deficit in soil due to the activation of photoprotective mechanism probably connected with synthesis of the phenolic compounds, which can play a role of photoprotectors in different stages of plant development. The photosynthetic apparatus of those two species scattered the excess of excitation energy more effectively, partially through its transfer to PS I. In this way, plants avoided irreversible and/or deep injuries to PS II. The observed changes in the red fluorescence emission and in the F v/F m for triticale and amaranth could have occurred due to serious and irreversible photoinhibitory injuries. Probably, field bean and maize acclimatized more effectively to soil drought through the development of effective mechanisms for utilising excitation energy in the photosynthetic conversion of light accompanied by the mechanism protecting the photosynthetic apparatus against the excess of this energy.  相似文献   

11.
Physical processes occurring in an intense electron beam with a virtual cathode in an interaction space filled with neutral gas are studied in a two-dimensional model. A mathematical model is proposed for investigating complicated self-consistent processes of neutral gas ionization by the beam electrons and the dynamics of an electron beam and heavy positive ions in the common space charge field with allowance for the two-dimensional motion of charged particles. Three characteristic dynamic regimes of the system are revealed: complete suppression of oscillations of the virtual cathode as a result of neutralizing its space charge by positive ions; the pulsed generation regime, in which the ions dynamics repeatedly suppresses and restores the virtual cathode oscillations; and the continuous generation regime with an anomalously high level of noisy oscillations.  相似文献   

12.
A number of methods for carbon capture, more specifically, CO2 capture have been researched in the past few years. One such method is electrochemical CO2 reduction to biomethane which also serves the purpose of biogas upgradation using microbial electrosynthesis systems. This technology is also known as Power to Gas technology and the review starts with the importance and requirement of PtG in the modern world by studying energy production and consumption patterns in Europe, with a focus on Norway. The paper summarises the recent works and concepts in the field of bioelectrochemical systems with a focus on electron transfer mechanisms, biocatalysts and reactor designs. Works and gaps in the studies of direct interspecies electron transfer and biocathode developments are discussed in detail. This is followed by a discussion explaining various reactor designs, the advantages of single chambered microbial reactors and the importance of reactors that combine anaerobic digestion with microbial electrolysis cells.  相似文献   

13.
The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.  相似文献   

14.
BioDeNO x process, which combines the advantages of the chemical absorption and biological reduction processes, is regarded as a promising candidate for NO removal from the flue gas. In the BioDeNO x , N2O was accumulated in the process of the biological reduction of FeII(EDTA)-NO. In this work, the pathway of the FeII(EDTA)-NO reduction was investigated and a mathematic model was developed to evaluate and predict the accumulation of N2O. Furthermore, parametric tests such as the effects of the C/N ratio (molar ratio of carbon/nitrogen), electron donor, and sulfite concentrations on N2O accumulation were investigated. Experimental results revealed that N2O accumulation was inhibited with a high C/N ratio (2.4), sufficient electron donor, and a low sulfite concentration. In addition, compared with the inorganic electron donor (FeII(EDTA)), the organic electron donor (glucose) was beneficial for microorganism metabolism and N2O accumulation inhibition. This work will provide significant insight into the inhibition of N2O accumulation during the operation of BioDeNO x and advance this novel process for the industrial application.  相似文献   

15.
The most common currency for estimating N2 fixation is acetylene reduction to ethylene. Real-time estimates of nitrogen fixation are needed to close the global nitrogen budget and these remain a critical gap in both laboratory and field experiments. We present a new method for continuous real-time measurements of ethylene production: Acetylene Reduction Assays by Cavity ring-down laser Absorption Spectroscopy (ARACAS). In ARACAS, air in the headspace of an incubation chamber is circulated with a diaphragm pump through a cavity ring-down ethylene spectrometer and back to the incubation chamber. This paper describes the new approach and its benefits compared to the conventional detection of ethylene by flame ionization detector gas chromatography. First, the detection of acetylene reduction to ethylene is non-intrusive and chemically non-destructive, allowing for real-time measurements of nitrogenase activity. Second, the measurements are made instantaneously and continuously at ppb levels, allowing for observation of real-time kinetics on time intervals as short as a few seconds. Third, the instrument can be automated for long time periods of measurement. Finally, the technique will be widely accessible by the research community as it can be readily adapted to most existing acetylene reduction protocols and is based on a modestly priced, commercially available instrument. We illustrate its use for measuring N2 fixation using two species, the diazotrophic bacterium Azotobacter vinelandii and the lichen Peltigera praetextata. We also discuss potential limitations of the approach, primarily the implications of leaks in the analyzer, as well as future improvements.  相似文献   

16.
Results are presented from measurements and numerical calculations of the electron energy distribution function in the plasma of a hollow-cathode glow discharge in N2: SF6 mixtures. It is shown that, when a small amount of SF6 is added to nitrogen, the number of electrons in the inverse region of the distribution function (2–6 eV) increases by about one order of magnitude. As the electric field in plasma increases to ≈0.5 V/cm, the dip in the distribution function disappears and the inversion region vanishes.  相似文献   

17.
Erosion of the leading edge a low-energy high-current electron beam injected into a low-pressure neutral gas under conditions of virtual cathode formation in the absence of an external magnetic field is studied theoretically. Beam losses are calculated as functions of the pressure and sort of gas, beam electron energy, and system geometry. The dependence of the duration of the leading edge erosion on the system parameters is analyzed.  相似文献   

18.
Differences in maximal yields of chlorophyll variable fluorescence (Fm) induced by single turnover (ST) and multiple turnover (MT) excitation are as great as 40%. Using mutants of Chlamydomonas reinhardtii we investigated potential mechanisms controlling Fm above and beyond the QA redox level. Fm was low when the QB binding site was occupied by PQ and high when the QB binding site was empty or occupied by a PSII herbicide. Furthermore, in mutants with impaired rates of plastoquinol reoxidation, Fm was reached rapidly during MT excitation. In PSII particles with no mobile PQ pool, Fm was virtually identical to that obtained in the presence of PSII herbicides. We have developed a model to account for the variations in maximal fluorescence yields based on the occupancy of the QB binding site. The model predicts that the variations in maximal fluorescence yields are caused by the capacity of secondary electron acceptors to reoxidize QA.  相似文献   

19.
Defective colloids of blue MoOx nanosheets were prepared by anodizing exfoliation method in water. This colloidal solution exhibits an optical plasmonic absorption band in the infrared region at about 760 nm. Merely mixing HAuCl4 solution with the MoOx leads to loss of the blue color, decaying of 760 nm plasmonic peak and simultaneous formation of the gold plasmon absorption peak at 550–570 nm. Some spectral variations in gold plasmonic peak and MoOx optical band gap were observed for Mo:Au ratio of 10:1, 20:1, 30:1, and 40:1. The size of the gold nanoparticles was in the 5–6 nm range with fcc crystalline structure. X-ray photoelectron spectroscopy (XPS) revealed that the initial solution contains Mo5+ states and hydroxyl groups, which after reduction, hydroxyl groups are eliminated and the Mo5+ states converted to Mo6+. The obtained Au-MoO3 colloids have a gasochromic property in which they are colored back to blue in the presence of hydrogen gas and the molybdenum oxide absorption peak recovered again. Furthermore, it was observed that both gold and Mo oxide plasmonic peaks redshift by insertion of hydrogen gas which is attributed to change in solution refractive index and formation of defect concentration.  相似文献   

20.
The process of relaxation of energetic O ions formed via dissociative attachment of electrons to molecules in the discharge plasmas of water vapor and H2O: O2 mixtures in a strong electric field is studied by the Monte Carlo method. The probability of energetic ions being involved in threshold ion–molecular processes is calculated. It is shown that several percent of energetic O ions formed via electron attachment to H2O molecules in the course of plasma thermalization transform into OH ions via charge exchange or are destroyed with the formation of free electrons. The probabilities of charge exchange of O ions and electron detachment from them increase significantly (up to 90%) when O ions are formed via electron attachment to O2 molecules in water vapor with an oxygen additive. This effect decreases with increasing oxygen fraction in the mixture but remains appreciable even when the fraction of H2O molecules in the H2O: O2 mixture does not exceed several percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号