共查询到20条相似文献,搜索用时 8 毫秒
1.
Proton exchange and base-pair opening kinetics in 5''-d(CGCGAATTCGCG)-3'' and related dodecamers. 下载免费PDF全文
We have used nuclear magnetic resonance (NMR) spectroscopy to measure the lifetimes of individual base-pairs in the palindromic DNA oligonucleotide 5'-d(CGCGAATTCGCG)-3' and in three other dodecamers with symmetrical base substitutions in the sites underlined. The resonances of the hydrogen-bonded imino protons in each of the substituted oligomers in the duplex form have been assigned using one dimensional nuclear Overhauser effect (1-D NOE) experiments. The lifetimes have been obtained from the dependence of selective longitudinal relaxation times and linewidths of the imino proton resonances on the concentration of base catalyst (Tris) at 25 degrees C and in the presence of 50 mM NaCl. The lifetimes of the central A.T base-pairs have been found to depend on base sequence. They are greatly increased in the dodecamer 5'-d(CGCAAATTTGCG)-3' which contains an A3T3 tract. The lifetimes of the central A.T base-pairs in 5'-d(CGCGAATTCGCG)-3', 5'-d(CGCTAATTAGCG)-3' and 5'-d(CGCCAATTGGCG)-3' are comparable. In all dodecamers, the lifetime of the A.T base-pair at the 5'-end of the AnTn tract is the shortest. The anomalous opening kinetics of the A.T base-pairs can be correlated to the bending properties of the corresponding sequences. 相似文献
2.
Processes of base-pair opening and proton exchange in Z-DNA 总被引:2,自引:0,他引:2
Using proton magnetic resonance, we have investigated imino and amino proton exchange in the Z form of the four oligomers d(Cbr8GCGCbr8G), d(CGm5CGCG), d(CG)6, and d(CG)12. In the latter two oligomers, all five exchangeable protons have been assigned. We find that proton acceptors such as NH3 or the basic form of Tris enhance imino proton exchange. The base-pair lifetime can then be obtained by extrapolation of the exchange time to infinite concentration of proton acceptor. For d(CG)6 and d(CG)12, the values are ca. 3.5 ms at 80 degrees C and ca. 130 ms at 35 degrees C. The latter value is about 65 times longer than in the same oligomers in the B form. The activation energy of base-pair opening, 80 kJ/mol, is the same in the Z and the B forms of d(CG)12. At 5 degrees C, the base-pair lifetime is about 3 s, much smaller than the time constant of the Z to B transition, to which it is therefore unrelated. The base-pair dissociation constant at 35 degrees C, 0.5 X 10(-6), is 5 times smaller than for the same oligomers in the B form. In the absence of added catalyst, at pH 7, the exchange time of the imino proton is 30 min at 5 degrees C. That of both cytidine amino protons, assigned by NOE, is about 50 min. The longest proton exchange time, ca. 330 min, is assigned unambiguously to the guanosine amino protons. Thus assigned and interpreted in terms of exchange chemistry rather than structural kinetics, the exchange times do not support earlier models of Z-DNA internal motions. 相似文献
3.
Integration Host Factor, IHF, is an E. coli DNA binding protein that imposes a substantial bend on DNA. Previous footprinting studies and bending assays have characterized several recognition sequences in the bacterial and lambda phage genome as unique in the way they are bound by IHF. We have chosen one of the lambda phage sites, H1, for study because it presents a small yet sequence-specific substrate for NMR analysis of the complex. A 19 base-pair duplex, H19, corresponding to the recognition sequence at the H1 site was constructed by isotopically labeling one of the strands with 15N. (1H, 15N) heteronuclear NMR experiments aided in assigning the imino proton resonances of the DNA alone and in complex with IHF. The NMR results are consistent with a mode of binding observed in the recent crystal structure of IHF bound to another of its sites from the lambda phage genome. Additionally, the dramatic change that IHF imposes on the imino proton chemical shifts is indicative of a severe deviation from canonical B-DNA structure. In order to understand the dynamic properties of the DNA in the complex with IHF, the exchange rates of the imino protons with the solvent have been measured for H19 with and without IHF bound. A drastic reduction in exchange is observed for the imino protons in the IHF bound DNA. In the DNA-protein complex, groups of adjacent base-pair exchange at the same rate, and appear to close more slowly than the rate of imino proton exchange with bulk water, since their exchange rate is independent of catalyst concentration. We infer that segments of the double helix as large as 6 bp open in a cooperative process, and remain open much longer than is typical for opening fluctuations in naked duplex DNA. We discuss these results in terms of the specific protein-DNA contacts observed in the crystal structure. 相似文献
4.
Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton 总被引:18,自引:0,他引:18
Using nuclear magnetic resonance line broadening, longitudinal relaxation and magnetization transfer from water, we have measured the imino proton exchange times in the duplex form of the 10-mer d-CGCGATCGCG and in seven other deoxy-duplexes, as a function of the concentration of exchange catalysts, principally ammonia. All exchange times are catalyst dependent. Base-pair lifetimes are obtained by extrapolation to infinite concentration of ammonia. Lifetimes of internal base-pairs are in the range of milliseconds at 35 degrees C and ten times more at 0 degrees C. Lifetimes of neighboring pairs are different, hence base-pairs open one at a time. Lifetimes of d(G.C) are about three times longer than those of d(A.T). The nature of neighbors usually has little effect, but lifetime anomalies that may be related to sequence and/or structure have been observed. In contrast, there is no anomaly in the A.T base-pair lifetimes of d-CGCGA[TA]5TCGCG, a model duplex of poly[d(A-T)].poly[d(A-T)]. The d(A.T) lifetimes are comparable to those of r(A.U) that we reported previously. End effects on base-pair lifetimes are limited to two base-pairs. The low efficiency of exchange catalysts is ascribed to the small dissociation constant of the deoxy base-pairs, and helps to explain why exchange catalysis had been overlooked in the past. This resulted in a hundredfold overestimation of base-pair lifetimes. Cytosine amino proteins have been studied in the duplex of d-CGm5CGCG. Exchange from the closed base-pair is indicated. Hence, the use of an amino exchange rate to evaluate the base-pair dissociation constant would result in erroneous, overestimated values. Catalyzed imino proton exchange is at this time the safest and most powerful, if not the only probe of base-pair kinetics. We propose that the single base-pair opening event characterized here may be the only mode of base-pair disruption, at temperatures well below the melting transition. 相似文献
5.
Nuclear magnetic resonance spectroscopy has been used to characterize opening reactions and stabilities of individual base pairs in two related DNA structures. The first is the triplex structure formed by the DNA 31-mer 5'-AGAGAGAACCCCTTCTCTCTTTTTCTCTCTT-3'. The structure belongs to the YRY (or parallel) family of triple helices. The second structure is the hairpin double helix formed by the DNA 20-mer 5'-AGAGAGAACCCCTTCTCTCT-3' and corresponds to the duplex part of the YRY triplex. The rates of exchange of imino protons with solvent in the two structures have been measured by magnetization transfer from water and by real-time exchange at 10 degrees C in 100 mM NaCl and 5 mM MgCl2 at pH 5.5 and in the presence of two exchange catalysts. The results indicate that the exchange of imino protons in protonated cytosines is most likely limited by the opening of Hoogsteen C+G base pairs. The base pair opening parameters estimated from imino proton exchange rates suggest that the stability of individual Hoogsteen base pairs in the DNA triplex is comparable to that of Watson-Crick base pairs in double-helical DNA. In the triplex structure, the exchange rates of imino protons in Watson-Crick base pairs are up to 5000-fold lower than those in double-helical DNA. This result suggests that formation of the triplex structure enhances the stability of Watson-Crick base pairs by up to 5 kcal/mol. This stabilization depends on the specific location of each triad in the triplex structure. 相似文献
6.
Previous structural studies on the complexes of the chromomycin (CHR) dimer with duplexes of d(A1-A2-G3-G4-C5-C6-T7-T8) and of d(A1-G2-G3-A4-T5-C6-C7-T8) in solution [one Mg(II) and two drugs per duplex] are extended to hydrogen exchange measurements. Exchange of the OH8 proton of chromomycin, measured by real time proton-deuterium exchange, is very slow and requires dissociation of the complex, whose lifetime is thus determined. The lifetimes and apparent dissociation constants of base pairs are deduced from the catalysis of imino proton exchange by ammonia. The four central base pairs, which interact with the CHR chromophores in the minor groove (Gao & Patel, 1990), may open within the complex, but the opening rate is less than in the free duplex by one to two orders of magnitude. The activation energy for base-pair opening and the differences between the lifetimes of adjacent pairs suggest that single base-pair opening is the predominant imino proton exchange pathway in all cases. In the symmetrical complex of chromomycin with the first duplex, the lifetimes of the central base pairs (G3.C6 and G4.C5) are in the same range (52 and 29 ms, respectively, at 38 degrees C). In the asymmetrical complex formed with the second duplex, the base-pair lifetimes in the G2-G3-A4-T5 segment that interacts with the chromophore moiety are strongly increased. That of G3.C6 is particularly long. Above 50 degrees C, exchange of the G3 imino proton is opening limited.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
Proton exchange and base-pair lifetimes in a deoxy-duplex containing a purine-pyrimidine step and in the duplex of inverse sequence 总被引:3,自引:0,他引:3
Using proton relaxation and magnetization transfer from water we have measured the imino proton exchange kinetics in two dodecadeoxynucleotide duplexes. One is formed by the self-complementary sequence 5'-d(C-C-T-T-T-C-G-A-A-A-G-G), the other by the inverse sequence. The imino proton exchange rates are found to depend on the concentration of ammonia or imidazole, acting as basic catalysts of proton exchange. Extrapolation of exchange times to infinite catalyst concentration yields the base-pair lifetimes, for instance 40 milliseconds for the central G.C base-pair of the 5'-d(C-C-T-T-T-C-G-A-A-A-G-G) duplex and four milliseconds for its A.T neighbour, at 15 degrees C. These results differ markedly from those reported by other laboratories for similar deoxy compounds. An explanation of the discrepancy has been proposed recently. Differences between base-pair lifetimes indicate that opening is not co-operative. From the catalyst efficiency relative to exchange from isolated nucleosides, we estimate the dissociation constant of each base-pair, e.g. 0.3 x 10(-6) and 1.5 x 10(-5) at 15 degrees C, for the same G.C and A.T base-pairs. The lifetime and dissociation constant of corresponding base-pairs of the two duplexes are similar, except for the central G.C base-pair. This correlates with differences in the solution structures reported by others. We have completed the assignments of the imino protons and of the six cytosine amino protons of the 5'-d(G-G-A-A-A-G-C-T-T-T-C-C) 12-mer. A new base-pair numbering scheme is proposed. 相似文献
8.
Using proton magnetic resonance, we have investigated the structure and the base-pair opening kinetics of the d-(AATTGCAATT) self-complementary duplex. All the non-exchangeable (except H5',5") and most exchangeable proton resonances have been assigned. The structure belongs to the B family. Imino proton exchange, measured by line broadening, longitudinal relaxation and magnetization transfer from water, is catalyzed by proton acceptors. The base-pair lifetimes, obtained by extrapolation of the exchange times to infinite concentration of ammonia are 2 and 3 milliseconds for internal A.Ts and 18 ms for G.C at 15 degrees C. In the absence of added catalysts, the imino proton of the first A.T base pair exchanges faster than that of the unpaired thymidine of the duplex formed by the sequence d-(AATTGCAATTT). This gives strong evidence for intrinsic exchange catalysis. The exchange of adenine amino protons from the closed state has been observed. Hence amino proton exchange is ill-suited for the investigation of base-pair opening kinetics. 相似文献
9.
Proton exchange rates in transfer RNA as a function of spermidine and magnesium 总被引:1,自引:4,他引:1 下载免费PDF全文
Solvent exchange rates of selected protons were measured by NMR saturation recovery for E. coli tRNAVal, E. colifMet and yeast tRNAPhe, at temperatures from 20 to 40 degrees C, in the presence of 0.12M Na+ and various levels of added spermidine. tRNAVal was also studied with added Mg++. The exchange rates in zero spermidine and Mg++ indicate early melting of the U8 A14 interaction, in accord with thermodynamic melting studies. Exchange rates for secondary protons suggest early melting of the T stem in tRNAfMet and the acceptor stem in tRNAPhe, in contradiction with melting transition assignments from thermodynamic work. Addition of 10 spermidines per tRNA stabilizes the secondary and tertiary interactions more effectively than added Na+, but less so than Mg++. Added spermidine has the curious effect of increasing the exchange rate of the psi 55 N1 proton, while protecting the psi 55 N3 proton from exchange in all three tRNA's. Added Mg++ has the same effect on tRNAVal. 相似文献
10.
The sarcin-ricin domain is a universal element of the RNA from the large ribosomal subunit. The domain is part of the binding site for elongation factors and is specifically cleaved by the toxins alpha-sarcin and ricin. In this work, we have mapped the energetics and dynamics of individual structural motifs in a 29-mer RNA oligomer containing the sarcin-ricin domain. The stability of individual base pairs in the structure was characterized from measurements of the exchange rates of imino protons using nuclear magnetic resonance spectroscopy at 10 degrees C. The measurements also provided the rates of opening and closing for selected base pairs. The results reveal that the structural stabilization free energies in the sarcin-ricin domain are broadly distributed between 2.9 and 10.6 kcal/mol. One of the least stable sites in the structure is the noncanonical G-A base pair located next to the phosphodiester bond that is cleaved by alpha-sarcin. The low stability of this base pair supports the proposal that cleavage by alpha-sarcin occurs by a base flipping mechanism. The opening dynamics of other base pairs is affected by elements of the structure such as the bulged-G motif and its cross-strand stacking. Participation in these motifs increases the lifetimes of the bases in an open, solvent-accessible conformation. 相似文献
11.
Using NMR magnetization transfer from water and ammonia-catalyzed exchange of the imino proton, we have measured the base-pair lifetimes and the dissociation constants of six RNA duplexes: [r(CGCGAUCGCG)](2), [r(CGCGAAUUCGCG)](2), [r(CCUUUCGAAAGG)](2), [r(CGCACGUGCG)](2), [r(GGU(8)CC).r(GGA(8)CC)], and [poly(rA).poly(rU)], and we compare them with those of their DNA homologues. As predicted by a two-state (closed/open) model of the pair, the imino proton exchange times decrease linearly vs. the inverse of catalyst concentration. As in DNA duplexes, base pairs open one at a time, and the kinetics is in most cases insensitive to the nature of the adjacent residues. The lifetime of the r(G.C) pairs, 40 to 50 ms, is longer than that of the equivalent in the corresponding oligodeoxynucleotides, and the dissociation constants, about 10(-)(7), are slightly smaller. The r(A.U) opening and closing rates are much larger than those of the d(A.T) pairs, but the stabilities are comparable. 相似文献
12.
13.
We have investigated by NMR the effects of NH(4)(+) on the chemical shifts, on the structure, and on the imino proton exchange kinetics of two duplexes containing an A-tract, [d(CGCGAATTCGCG)](2) and [d(GCA(4)T(4)GC)](2), and of a B-DNA duplex,[d(CGCGATCGCG)](2). Upon NH(4)(+) addition to [d(CGCGAATTCGCG)](2), the adenosine H2 protons, the thymidine imino protons, and the guanosine imino proton of the adjacent G.C pair show unambiguous chemical shifts. Similar shifts are observed in the A-tract of [d(GCA(4)T(4)GC)](2) and for the A5(H2) proton of the B DNA duplex [d(CGCGATCGCG)](2). The localization of the shifted protons suggests an effect related to NH(4)(+) binding in the minor groove. The cross-peak intensities of the NOESY spectra collected at low and high NH(4)(+) concentrations are comparable, and the COSY spectra do not show any change of the sugar pucker. This indicates a modest effect of ammonium binding on the duplex structures. Nevertheless, the imino proton exchange catalysis by ammonia provides evidence for a substantial effect of NH(4)(+) binding on the A.T base-pair kinetics in the A-tracts. Proton exchange experiments performed at high and low NH(4)(+) concentrations show the occurrence of two native conformations in proportions depending on the NH(4)(+) concentration. The base-pair lifetimes and the open-state lifetimes of each conformation are distinct. Exchange from each conformation proceeds via a single open state. But if, and only if, the NH(4)(+) concentration is kept larger than 1 M, the A.T imino proton exchange times of A-tract sequences exhibit a linear dependence versus the inverse of the NH(3) proton acceptor concentration. This had been interpreted as an indication for two distinct base-pair opening modes (W?rml?nder, S., Sen, A., and Leijon, M. (2000) Biochemistry 39, 607-615). 相似文献
14.
L J Schreiner I G Cameron N Funduk L Miljkovi? M M Pintar D N Kydon 《Biophysical journal》1991,59(3):629-639
The nuclear magnetic resonance spin-grouping technique has been applied to dentin from human donors of different ages. The apparent T2, T1, and T1 rho have been determined for natural dentin, for dentin which has been dried in vacuum, and for dried dentin which has been rehydrated in an atmosphere with 75% relative humidity. All apparent spin relaxation has been analyzed for exchange between the spin groups in which the dentin protons exist; the analyses incorporate the results of selective inversion recovery T1 measurements which better probe the effects of exchange. The exchange analyses of the high fields and rotating frame spin-lattice relaxation have also been correlated to determine uniquely the inherent relaxation parameters of the proton spin groups constituting the dentin magnetization. The natural dentin contains protons on water, protein, and hydroxy apatite; these spins contribute 50%, 45%, and 5% to the total dentin proton magnetization, respectively. The water exists in three distinct environments, the dynamics of each environment has been modeled. In the natural dentin 30% of the water undergoes uni-axial reorientation. 52% of the water has similar relaxation characteristics to bound water hydrating a large molecule, and the majority of the remaining water acts as bulk water undergoing isotropic reorientation. The results are independent of the age of the donor. 相似文献
15.
Proton exchange and nuclear magnetic resonance spectroscopy are being used to characterize the kinetics and energetics of base-pair opening in two nucleic acid double helices. One is the RNA duplex 5'-r(GCGAUAAAAAGGCC)-3'/5'-r(GGCCUUUUUAUCGC)-3', which contains a central tract of five AU base pairs. The other is the homologous DNA duplex with a central tract of five AT base pairs. The rates and the equilibrium constants of the opening reaction of each base pair are measured from the dependence of the exchange rates of imino protons on ammonia concentration, at 10 °C. The results reveal that the tract of AU base pairs in the RNA duplex differs from the homologous tract of AT base pairs in DNA in several ways. The rates of opening of AU base pairs in RNA are high and increase progressively along the tract, reaching their largest values at the 3'-end of the tract. In contrast, the opening rates of AT base pairs in DNA are much lower than those of AU base pairs. Within the tract, the largest opening rate is observed for the AT base pair at the 5'-end of the tract. These differences in opening kinetics are paralleled by differences in the stabilities of individual base pairs. All AU base pairs in the RNA are less stable than the AT base pairs in the DNA. The presence of the tract enhances these differences by increasing the stability of AT base pairs in DNA while decreasing the stability of AU base pairs in RNA. Due to these divergent trends, along the tracts, the AU base pairs become progressively less stable than AT base pairs. These findings demonstrate that tracts of AU base pairs in RNA have specific dynamic and energetic signatures that distinguish them from similar tracts of AT base pairs in DNA. 相似文献
16.
Proton exchange of poly(rA).poly(rU) and poly(rI).poly(rC) has been studied by nuclear magnetic resonance line broadening and saturation transfer from H2O. Five exchangeable peaks are observed. They are assigned to the imino, amino and 2'-OH ribose protons. The aromatic spectrum is also assigned. Contrary to previous observations, we find that the exchange of the imino proton is strongly buffer sensitive. This property is used to derive the base-pair lifetime, which is in the range of milliseconds at 27 degrees C, 100 times smaller than published values. The enthalpy for the base-opening reaction (-86 kJ/mol) and the insensitivity of the reaction to magnesium suggest that the open state involves a small number of base-pairs. The similarities in the exchange from the two duplexes indicate that the same open state is responsible for exchange of purine and pyrimidine imino protons. For the lifetime of the open state and for the base-pair dissociation constant, we obtain only lower limits. At 27 degrees C they are three microseconds and 10(-3), respectively. The analysis that yields the much larger values published previously is based on the assumption that amino protons exchange only from open base-pairs. But theory and preliminary experiments indicate that it may occur from the closed duplex. The exchange of amino protons is slower than that of the imino protons. Exchange of the 2'-OH protons from the duplexes is much slower than from single-stranded poly(rU), and it is accelerated by magnesium. This could indicate hydrogen-bonding to backbone phosphate. Discrepancies between our results and those of previous studies are discussed. 相似文献
17.
The interaction of Escherichia coli RNA polymerase with poly[d(A-T)] and poly[d-(I-C)] was studied by difference absorption spectroscopy at temperatures, from 5 to 45 degrees C in the absence and presence of Mg2+. The effect of KCl concentration, at a fixed temperature, was studied from 12.5 to 400 mM. Difference absorption experiments permitted calculation of the extent of DNA opening induced by RNA polymerase and estimation of the equilibrium constant associated with the isomerization from a closed to an open RNA polymerase-DNA complex. delta H0 and delta S0 for the closed-to-open transition with poly[d(A-T)] or poly[d(I-C)] complexed with RNA polymerase are significantly lower than the values associated with the helix-to-coil transition for the free polynucleotides. For the RNA polymerase complexes with poly[d(A-T)] and poly[d(I-C)] in 50 mM KCl, delta H0 approximately 15-16 kcal/mol (63-67 kJ/mol) and delta S0 approximately 50-57 cal/K per mol (209-239 J/K per mol). The presence of Mg2+ does not change these parameters appreciably for the RNA polymerase-poly[d(A-T)] complex, but for the RNA polymerase-poly[d(I-C)] complex in the presence of Mg2+, the delta H0 and delta S0 values are larger and temperature-dependent, with delta H0 approximately 22 kcal/mol (92 kJ/mol) and delta S0 approximately 72 cal/K per mol (approx. 300 J/K per mol) at 25 degrees C, and delta Cp0 approximately 2 kcal/K per mol (approx. 8.3 kJ/K per mol). The circular dichroism (CD) changes observed for helix opening induced by RNA polymerase are qualitatively consistent with the thermally induced changes observed for the free polynucleotides, supporting the difference absorption method. The salt-dependent studies indicate that two monovalent cations are released upon helix opening. For poly[d(A-T)], the temperature-dependence of enzyme activity correlates well with the helix opening, implying this step to be the rate-determining step. In the case of poly[d(I-C)], the same is not true, and so the rate-determining step must be a process subsequent to helix opening. 相似文献
18.
Direct estimation of base-pair exchange kinetics in oligo-DNA by a combination of NOESY and ROESY experiments. 下载免费PDF全文
A new method for the determination of the kinetics of exchange of the imino protons of DNA duplex is reported using a combination NOESY and ROESY experiments at short mixing times (< or = 20 ms). These results have been compared with the commonly used longitudinal relaxation approach through the T1 measurement. To calculate kex and pi ex by ROESY-NOESY experiment, the volume of the cross-peaks between imino protons and water in the NOESY and ROESY spectra have been measured separately from the magnetization term. This work shows that the present approach for the measurement of the kinetics of slow exchanging imino protons of DNA duplex is comparable to the saturation recovery experiment in which the exchange rate can be accelerated by the addition of a base catalyst. The present ROESY-NOESY approach has been found to be particularly useful and reasonably accurate for the measurement of exchange kinetics of both the fast- and slow-exchanging imino protons in DNA duplex both under non-physiological and physiological condition where the saturation recovery method can not be used. 相似文献
19.
20.