首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
Under the sponsorship of the International Programme on Chemical Safety (IPCS), 17 laboratories from diverse regions of the world participated in evaluating the utility of four plant bioassays for detecting genetic hazards of environmental chemicals. The bioassays included in this collaborative study were: Arabidopsis thaliana embryo and chlorophyll assay and Tradescantia stamen hair assay, Tradescantia paludosa micronucleus assay and Vicia Faba root tip assay. Four to six laboratories participated in the performance of each of the bioassays. All laboratories participating in a particular bioassay were supplied with uniform plant material as well as standardized protocol. Five direct acting water soluble test chemicals, i.e. maleic hydrazide, methyl nitrosourea, ethyl methanesulfonate, sodium azide and azidoglycerol, were selected for this study. The study was designed to be completed in three phases. Ethyl methanesulfonate was used as a positive control and has already been reported earlier (Sandhu et al., 1991). The data from the remaining four chemicals used for the evaluation of four plant test systems in the first phase of the collaborative study are reported in this issue.  相似文献   

2.
W F Grant 《Mutation research》1999,426(2):107-112
Higher plants are recognized as excellent indicators of cytogenetic and mutagenic effects of environmental chemicals and are applicable for the detection of environmental mutagens both indoor and outdoor. They are highly reliable bioassays with a high sensitivity for monitoring and testing for genotoxins. A brief review of major steps in the development of higher plant genotoxic assays is given.  相似文献   

3.
The Tradescantia stamen hair mutation (Trad-SH) assay (clone 4430) was evaluated for its efficiency and reliability as a screen for mutagens in an IPCS collaborative study on plant systems. Four coded chemicals, i.e. azidoglycerol (AG, 3-azido-1,2-propanediol), N-methyl-N-nitrosourea (MNU), sodium azide (NaN3) and maleic hydrazide (MH) were distributed by the Radian Corporation to the five laboratories in five different countries for testing mutagenicity. Pink mutations were scored between the 7th and 14th day according to a standard protocol. Test results from the five individual laboratories were analyzed and compared after decoding. One out of the two laboratories that conducted tests on AG demonstrated that AG is a mutagen with genetically effective doses ranging from 50 to 100 μg/ml. MH yielded positive responses in all laboratories but no linear dose-response pattern was observed. The effective dose range for MH was between 1 and 45 μg/ml. The mutagenicity of MNU was reported by five laboratories in the dose range between 10 and 80 μg/ml. NaN3, which exhibited a relatively high degree of toxicity, elicited a positive mutagenic response in three of the five laboratories in which it was tested. As with MNU the effective dose for NaN3 ranged between 3 and 80 μg/ml. The results from the current study substantiate the Trad-SH assay as a reliable system for screening chemicals for their potential mutagenic effects. Although the study was carried out exclusively under laboratory conditions, a survey of the current literature would indicate that the Trad-SH assay could be an effective in situ monitor of gaseous, liquid, and radioactive pollutants as well.  相似文献   

4.
In the first phase of a collaborative study by the International Programme on Chemical Safety (PRCS), four coded chemicals, i.e. azidoglycerol (AG, 3-azido-1,2-propanediol), methyl nitrosurea (MNU), sodium azide (NaN3) and maleic hydrazide (MH), and ethyl methanesulfonate (EMS) as a positive control were tested in four plant bioassays, namely the Arabidopsis embryo and chlorophyll mutation assay, the Tradescantia stamen hair assay (Trad-SH assay), the Tradescantia micronucleus assay (Trade-MCN), and the Vicia faba root tip assay. Seventeen laboratories from diverse regions of the world participated with four to six laboratories each using one plant assay. For the Arabidopsis assay, laboratories were in agreement with MNU and AG giving positive responses and NaN3 giving a negative response. With the exception of one laboratory which reported MH as weakly mutagenic, no mutagenic response was reported for MH by the other laboratories. For the Vicia faba assay, all laboratories reported a positive response for MNU, AG, and MH, whereas two of the six laboratories reported a negative response for NaN3. For the Trad-SH assay, MH was reported as giving a positive response and a positive response was also observed for MNU with the exception of one laboratory. NaN3, which exhibited a relatively high degree of toxicity, elicited a positive response in three of the five laboratories. AG was found positive in only one of the two laboratories which tested this chemical. For the Trad-MCN assay, MNU and MH were reported as positive by all laboratories, while four out of five laboratories reported NaN3 to be positive. Only one of three laboratories reported AG to be positive. The major sources of variability were identified and considered to be in the same range as found in similar studies on other test systems. Recommendations were made for minor changes in methodology and for initiating the second phase of this study.  相似文献   

5.
Since the early studies on the genetic effects of chemical and physical agents, species and clones of Tradescantia have been used as experimental subjects, by virtue of a series of favorable genetic characteristics. Bearing just six pairs (2n = 12) of large, easily observable chromosomes, cells from almost every part of the plant, from the root tips to the developing pollen tube, yield excellent material for cytogenetic studies.

As a consequence of the intensive use of Tradescantia in genetic studies, a series of genetic characteristics have been found that offer opportunities for the detection of agents affecting the stability of the genome. At least five such characteristics have been selected as endpoints for the establishment of assays to evaluate mutagenesis. Three of these, root-tip mitosis, pollen-tube, and microspore mitosis are essentially chromosome aberration assays, wherein one observes and evaluates the visible damage in the chromosomes. A fourth, the stamen-hair mutation assay (Trad-SHM), is a point mutation mitotic assay based on the expression of a recessive gene for flower color in heterozygous plants. The fifth assay is a cytogenetic test based on the formation of micronuclei (Trad-MCN) that result from chromosome breakage in the meiotic pollen mother cells.

This article examines the characteristics and fundamentals of the Trad-MCN and the Trad-SHM assays and reviews the results obtained to date with these systems in the assessment of environmental mutagenesis.  相似文献   


6.
T H Ma 《Mutation research》1999,426(2):103-106
Among the seven plant bioassays reviewed by the US Environmental Protection Agency (EPA) Gene-Tox program in 1980, the Allium/Vicia root tip chromosome aberration assay and the Tradescantia stamen hair mutation and micronucleus assays were adopted by the International Program on Plant Bioassays (IPPB) for monitoring or testing environmental pollutants. These assays are highly sensitive and capable of detecting mutagens, clastogens and carcinogens from the environment. They are effective in situ monitors. These bioassays were validated and their protocols were standardized through a program under the International Program on Chemical Safety (IPPB), the precursor of the IPPB program which currently is in operation under the auspices of the United Nations Environment Program (UNEP). Six different categories of environmental studies, ranging from wastewater, surface or ground water, soil samples, ambient air, pesticides, and radiation, were carried out and are reported in this special issue. The mission of the IPPB/UNEP is to use these bioassays to monitor or test environmental mutagens and clastogens in the air, water, and soil to safeguard the quality of these essential elements in life and to use these simple and clear indicators of pollution damage as the tool for environmental education for the general public. The published reports of the monitoring and testing results will establish the database for environmental conditions in a number of locations around the world. An international monitoring network for the detection of genotoxicity of environmental pollutants is being established under the auspices of UNEP to protect the global environment.  相似文献   

7.
The mouse lymphoma assay (MLA) and Chinese hamster ovary (CHO) cell assay are sensitive indicators of mutagenicity. The CHO assay has been modified technically to permit treatment in suspension and soft agar cloning comparable to the MLA. This methodology eliminates the risk of metabolic cooperation and the trauma of trypsinization. In addition, a larger population of cells can be treated and cloned for mutant selection. In order to compare the effectiveness of the test systems, 10 chemicals were evaluated for the induction of forward mutations in the CHO and MLA. Several of these chemicals have been reported as clastogenic; therefore, abbreviated colony sizing was performed to gauge the extent of genetic damage to the MLA cells. Both test systems detected benzo[a]pyrene, mitomycin C, acridine orange, and proflavin, and, with the exception of proflavin, more large colonies were present than small colonies. The suspect clastogen, phenytoin, was not mutagenic in the MLA and produced inconclusive results in the CHO. Ethidium bromide, a clastogen and a bacterial mutagen, was not mutagenic in either the MLA or CHO. Four compounds (p-aminophenol, benzoin, methoxychlor, and pyrene) were positive in the MLA, generally inducing a large number of small colonies, while demonstrating no mutagenic activity in the CHO assay. They have also been shown to be generally nongenotoxic in other test systems. Overall, the modified CHO assay did not appear to be better than the MLA for the detection of mutagenic agents. However, the MLA does appear to have lower specificity.Abbreviations AO acridine orange - BAP benzo[a]pyrene - BZN benzoin - CHO Chinese hamster ovary cell assay - DPH diphenylhydantoin - EB ethidium bromide - EMS ethylmethanesulfonate - 3MC 3-methylcholanthrene - MLA mouse lymphoma asay - MMC mitomycin C - MXC methoxychlor - PAP p-aminophenol - PRO proflavin - PYR pyrene  相似文献   

8.
Mutagen sensitivity assays in population studies   总被引:4,自引:0,他引:4  
Au WW 《Mutation research》2003,544(2-3):273-277
Human population monitoring studies are frequently conducted to determine if exposure to environmental mutagenic agents can cause health problems or not. In these studies, a variety of biomarkers are used to identify biological events that are predictive of health consequences. An emphasis in this report is on the use of mutagen sensitivity assays to understand health risk. The assay is based on the assumption that exposure to mutagenic chemicals or mixtures of chemicals for a long time can cause cellular changes that are expressed as mutagen sensitivity. From experience in using these assays in cancer patients and in mutagen-exposed populations, it is clear that the expression of mutagen sensitivity is based on the interactions between mutagen exposure and individual susceptibility. When studies are conducted under appropriate conditions, expression of mutagen sensitivity is suggestive of increased risk for environmental disease such as cancer.  相似文献   

9.
A collaborative study was designed to assess the mutagenicity of 2-amino-N6-hydroxylaminopurine (AHA) in a wide variety of eukaryotic assays systems in terms of potency and specificity. Earlier studies in Salmonella and Neurospora had shown that AHA was an extremely potent mutagen which appeared to cause predominantly AT to GC base-pair transitions. This discovery was viewed as an unusual opportunity to explore the general utility of different eukaryotic assay systems for genetic risk assessment. The objective was to determine whether AHA would show comparable potency and specificity in those eukaryotic organisms used to evaluate mutagenic potential of environmental chemicals for the human population. The data presented in this report show that AHA was mutagenic in all the eukaryotic assays utilized; however, the level of effect was found to be assay system-dependent. In addition, in assays where other base analogs were used as positive controls, differences in relative potency were observed from those obtained in the earlier studies with Salmonella and Neurospora. When alkylating agents were used as positive controls in the higher eukaryotic assays, AHA was found to have a mutagenic potency comparable to ethylnitrosourea (ENU), ethyl methanesulfonate (EMS) or methyl methanesulfonate (MMS) for many of the assays. With regard to mutagenic specificity, AHA appears to induce gene/point mutations in eukaryotic organisms, resulting predominantly from base-pair substitutions, predominantly AT to GC base-pair transitions; however, there was some unexplained variation in the ratio of these base-pair transitions and other transitions and transversions as a function of assay system. In addition, studies on the induction of micronuclei have shown that AHA induces chromosomal damage at high concentrations and low levels of survival.  相似文献   

10.
Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.  相似文献   

11.
The ability of plant genotoxicity assays to predict carcinogenicity   总被引:3,自引:0,他引:3  
A number of assays have been developed which use higher plants for measuring mutagenic or cytogenetic effects of chemicals, as an indication of carcinogenicity. Plant assays require less extensive equipment, materials and personnel than most other genotoxicity tests, which is a potential advantage, particularly in less developed parts of the world. We have analyzed data on 9 plant genotoxicity assays evaluated by the Gene-Tox program of the U.S. Environmental Protection Agency, using methodologies we have recently developed to assess the capability of assays to predict carcinogenicity and carcinogenic potency. All 9 of the plant assays appear to have high sensitivity (few false negatives). Specificity (rate of true negatives) was more difficult to evaluate because of limited testing on non-carcinogens; however, available data indicate that only the Arabidopsis mutagenicity (ArM) test appears to have high specificity. Based upon their high sensitivity, plant genotoxicity tests are most appropriate for a risk-averse testing program, because although many false positives will be generated, the relatively few negative results will be quite reliable.  相似文献   

12.
Tests have shown plant bioassays to be excellent for mutagenicity studies. Most studies with plant bioassays, however, have been carried out either in the laboratory, or if, in situ, as monitors of atmospheric contaminants. The primary purpose of this study was to assess the utility of in situ plant mutagenicity bioassays in monitoring water contaminants. The assay systems tested were the Tradescantia stamen hair and micronucleus assays for the detection of gene mutations and chromosomal aberrations respectively, and the Vicia faba bioassay system which detects chromosomal aberrations in root tips. The assays were used to test the effluent from a pulp and paper mill located on the north shore of Lake Superior. Assays were performed in a creek containing raw effluent and in the bay of Lake Superior into which the creek emptied. All in situ treatments were carried out for 24 h. The effluent from the creek was heavy with pulp and debris which coated the plant cuttings and the Vicia faba seedlings and may have restricted the uptake from the effluent. In the creek, at test sites 11.5 km from the source, the effluent was toxic to the Vicia faba roots as evidenced by a reduction in the mitotic index. The data for the Tradescantia stamen hair assay in the creek were equivocal. The cuttings from the creek test sites and the air and water control sites appeared to have undergone a physiological delay. Within a day or two after the return to the laboratory, that is 6-8 days after testing, flowering almost ceased and did not fully resume until about day 35. This reduction in flowering was particularly severe with the cuttings from the effluent and air control sites, making it very difficult to interpret the results. In contrast, the Tradescantia micronucleus and Vicia faba chromosomal aberration data were unequivocal; each produced positive responses at both test sites relative to the air and water controls. The results obtained for the bay sites with all 3 assays were in agreement. In that section of the bay visibly contaminated by the creek effluent, increases in stamen hair mutants, micronuclei, and chromosome aberrations were measured. In general, there was a considerable reduction in the number of mutant events observed for the water samples brought back from the test sites and tested in the laboratory.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In the city of Queretaro, around 500 tons of solid wastes are produced everyday and are deposited in a landfill. This is the result of social and economic activities of human beings or from their normal physiological functions. As a result of rain, leachates are produced, which, if not handled and treated correctly, may pollute the underground water. Among the bioassays developed for the detection of mutagenicity in environmental pollutants, plant systems have been proven to be sensitive, cheap, and effective. The purpose of this study was to determine the presence of genotoxic agents in the leachates of the landfill of the city using three bioassays: Tradescantia-micronucleus (Trad-MCN), Tradescantia stamen hair mutations (Trad-SHM) and Allium root anaphase aberrations (AL-RAA) and make a comparison of the results in the three assays. Leachates were sampled during both the dry and rainy seasons. Plant cuttings of Tradescantia or the roots of Allium were treated by submerging them in the leachates. Three replicates of each sample were analyzed in each of the three bioassays. As expected the samples of leachates collected during the dry season showed a higher genotoxicity than those collected during the rainy season. In conclusion, there are substances present in the leachates capable of inducing genotoxicity in the plant assays. On the other hand, the plant assays showed different degrees of sensitivity: the more sensitive was the Trad-MCN bioassay and the less sensitive the Trad-SHM assay. Therefore, when analyzing environmental pollutants it is recommended to use a battery of bioassays.  相似文献   

14.
Four coded chemicalsm azidoglycerol (AG), N-methyl-N-nitrosourea (MNU), sodium azide (NaN3), and maleic hydrazide (MH), were tested with the Tradescantia micronucleus (Trad-MCN) bioassay by five independent laboratories from five different countries. The purpose of this international collaborative study was to evaluate four plant bioassays, of which the Trad-MCN assay was one, for their sensitivity, efficiency and reliability. The study was carried out under the sponsorship of the International Programme on Chemical Safety. All laboratories adhered to a standard Trad-MCN protocol which suggested that three replicate tests be conducted with each chemical. The results reported by all laboratories, although not equal, showed good agreement among the laboratories. In fact, all five laboratories obtained positive results with MH and MNU, while four of the five laboratories achieved positive results with NaN3. AG was tested in only three laboratories. Two reported negative results, while one reported positive results but only at a single high dose. The data from this study suggest that under normal conditions, the Trad-MCN bioassay is an efficient and reliable short-term bioassay for clastogens. It is suitable for the rapid screening of chemicals, and also is specially qualified for in situ monitoring of ambient pollutants.  相似文献   

15.
The presence of a large number of pollutants, including mutagenic agents in the environment is a problem of a major concern. Rapid progress in plant biotechnology, especially in the development of cell transformation methods, including the production of transformed roots -- 'hairy roots' -- has opened new possibilities to use transformed root cultures in plant bioassays for the evaluation mutagenic effects of different agents. We have used Crepis capillaris hairy roots for evaluation of cytogenetic effects of mutagenic treatment. Effects of maleic acid hydrazide (MH) and X-ray treatment were analysed in chromosomal aberration, sister chromatid exchange (SCE) and TUNEL tests. Comparison of cytogenetic effects in hairy roots and roots of seedlings showed a much higher sensitivity of hairy roots, which makes them convenient material for monitoring DNA damage after mutagenic treatment.  相似文献   

16.
The utilization of the specific-locus assay in the ad-3 region of two-component heterokaryons of Neurospora crassa is compared with that of other eukaryotic assay systems for the evaluation of the mutagenic effects of environmental chemicals. In contrast to other in vitro specific-locus assays, the Neurospora assay can detect mutations not only at the ad-3A and ad-3B loci but also recessive lethal mutations elsewhere in the genome. Mutational damage in this system can be characterized readily by means of classical genetic techniques involving heterokaryon tests to determine genotype, and allelic complementation among ad-3BR mutations. The percentages of ad-3BR mutations showing allelic complementation with polarized or nonpolirized complementation patterns provide a presumptive identification of the genetic alterations at the molecular level in individual mutants. Dikaryon and trikaryon tests (using 3 strains carrying multilocus deletion mutations as tester strains) distinguish ad-3 mutations resulting from gene/point mutation, multilocus deletion mutation, and various types of multiple-locus mutation.

The array of ad-3 mutations recovered from forward-mutation experiments can be expressed in terms of Mutational Spectra, which make it possible to make comparisons of mutational types between different doses of the same mutagen, different mutagens, or the effects of the same mutagen on different strains.

Another important feature of this specific-locus assay system is that the effects of mutagens can be studied in both DNA excision repair-proficient (H-12) and -deficient (H-59) two-component heterokaryons to evaluate both quantitative and qualitative differences between the spectra of induced d-3  相似文献   


17.
Three well known plant bioassays, the Allium root chromosome aberration (AL-RAA) assay, the Tradescantia micronucleus (Trad-MCN) assay, and the Tradescantia stamen hair (Trad-SHM) mutation assay were validated in 1991 by the International Programme on Chemical Safety (IPCS) under the auspices of the World Health Organization, and the United Nations Environment Programme (UNEP). These plant bioassays have proven to be efficient tests for chemical screening and especially for in situ monitoring for genotoxicity of environmental pollutants. As a result of this validation study, standard protocols of these three plant bioassays were used by some of the 11 participating countries in the IPCS to carry on genotoxicity tests on air, water and soil as a follow up activity. In the city of Queretaro, Mexico, wastewater coming from both industrial and domestic sources and without any treatment is used to irrigate the farm crops, polluting the soil. Potentially the pollutants could reach the food chain. For the above reason, soil irrigated with wastewater was sampled and monitored for the presence of genotoxic agents using the above three bioassays. Extracts from soil samples were made using distilled water and organic solvents by shaking the sample for about 12 h under a relatively low temperature (15-20 degrees C). Plant cuttings of Tradescantia or the roots of Allium were treated by submerging them in the extracts. Three replicates of each sample were analyzed in each of the three bioassays. Extracts using DMSO, ethanol and distilled water tested positive in the three bioassays and there were no differences for the genotoxicity of the extracts with the different solvents.  相似文献   

18.
A forward and a reverse mutation assay designed to detect environmental mutagens have been compared in Salmonella typhimurium. The forward mutation assay scored resistance to L-arabinose and the reverse assay, reversion of histidine auxotrophy. Eighteen chemicals of different structural groups, all known to be mutagenic in the histidine reverse assay, were applied to strains carrying the genetic markers needed to perform both mutation assays. The mutagenicity of each chemical was determined by both plate and liquid tests. The plate test counted absolute numbers of surviving mutants and the liquid test separately measured survival and frequency of mutants among the survivors. All the chemicals used were found to be mutagenic in both mutation assays. The response of the L-arabinose assay was equal to or larger than the response of the histidine assay in the case of 16 chemicals. The two other compounds, 2-nitrofluorene and sodium azide, were detected more efficiently by the histidine assay. Sodium azide, a non-carcinogenic compound, is a potent mutagen in the histidine assay, but very weak in the L-arabinose assay.  相似文献   

19.
The presence of a large number of pollutants, including mutagenic agents in the environment is a problem of a major concern. Rapid progress in plant biotechnology, especially in the development of cell transformation methods, including the production of transformed roots – ‘hairy roots’ – has opened new possibilities to use transformed root cultures in plant bioassays for the evaluation mutagenic effects of different agents. We have used Crepis capillaris hairy roots for evaluation of cytogenetic effects of mutagenic treatment. Effects of maleic acid hydrazide (MH) and X-ray treatment were analysed in chromosomal aberration, sister chromatid exchange (SCE) and TUNEL tests. Comparison of cytogenetic effects in hairy roots and roots of seedlings showed a much higher sensitivity of hairy roots, which makes them convenient material for monitoring DNA damage after mutagenic treatment.  相似文献   

20.
C Tease 《Mutation research》1992,296(1-2):135-142
Data from studies on radiation- and chemically-induced chromosome aberrations in mouse oocytes have been summarized. An attempt has been made to assess the relative sensitivity to mutagenic agents of female and male germ cells through comparison of observations from mutation studies of female and male mice. No unequivocal evidence of a mutagenic effect limited to a single sex could be found in the cytogenetic data, although differences in relative germ cell sensitivity could be inferred for ionizing radiation and some chemicals. However, the pattern of inter-sex variations was not consistent: for example, irradiation of dictyate oocytes yielded a lower rate of heritable chromosome translocations than the same dose to spermatogonia; in contrast, some chemicals, such as mitomycin C, yielded a larger incidence of chromosome anomalies after treatment of dictyate oocytes than spermatogonia. Overall, the limitations in quality and quantity of cytogenetic data, and the uncertainties associated with comparing information obtained in disparate assays, place severe constraints on the use of observations on induced chromosome aberrations to assess the relative sensitivities of female and male germ cells to environmental mutagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号