首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chu HA  Debus RJ  Babcock GT 《Biochemistry》2001,40(7):2312-2316
We report both mid-frequency (1800-1200 cm(-)(1)) and low-frequency (670-350 cm(-)(1)) S(2)/S(1) FTIR difference spectra of photosystem II (PSII) particles isolated from wild-type and D1-D170H mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Both mid- and low-frequency S(2)/S(1) spectra of the Synechocystis wild-type PSII particles closely resemble those from spinach PSII samples, which confirms an earlier result by Noguchi and co-workers [Noguchi, T., Inoue, Y., and Tang, X.-S. (1997) Biochemistry 36, 14705-14711] and indicates that the coordination environment of the oxygen evolving complex (OEC) in Synechocystis is very similar to that in spinach. We also found that there is no appreciable difference between the mid-frequency S(2)/S(1) spectra of wild-type and of D1-D170H mutant PSII particles, from which we conclude that D1-Asp170 does not undergo a significant structural change during the S(1) to S(2) transition. This result also suggests that, if D1-Asp170 ligates Mn, it does not ligate the Mn ion that is oxidized during the S(1) to S(2) state transition. Finally, we found that a mode at 606 cm(-)(1) in the low-frequency wild-type S(2)/S(1) spectrum shifts to 612 cm(-)(1) in the D1-D170H mutant spectrum. Because this 606 cm(-)(1) mode has been previously assigned to an Mn-O-Mn cluster mode of the OEC [Chu, H.-A., Sackett, H., and Babcock, G. T. (2000) Biochemistry 39, 14371-14376], we conclude that D1-Asp170 is structurally coupled to the Mn-O-Mn cluster structure that gives rise to this band. Our results suggest that D1-Asp170 either directly ligates Mn or Ca(2+) or participates in a hydrogen bond to the Mn(4)Ca(2+) cluster. Our results demonstrate that combining FTIR difference spectroscopy with site-directed mutagenesis has the potential to provide insights into structural changes in Mn and Ca(2+) coordination environments in the different S states of the OEC.  相似文献   

2.
Hou LH  Wu CM  Huang HH  Chu HA 《Biochemistry》2011,50(43):9248-9254
NH(3) is a structural analogue of substrate H(2)O and an inhibitor to the water oxidation reaction in photosystem II. To test whether or not NH(3) is able to replace substrate water molecules on the oxygen-evolving complex in photosystem II, we studied the effects of NH(3) on the high-frequency region (3750-3550 cm(-1)) of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra (pH 7.5 at 250 K), where OH stretch modes of weak hydrogen-bonded active water molecules occur. Our results showed that NH(3) did not replace the active water molecule on the oxygen-evolving complex that gave rise to the S(1) mode at ~3586 cm(-1) and the S(2) mode at ~3613 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum of PSII. In addition, our mid-frequency FTIR results showed a clear difference between pH 6.5 and 7.5 on the concentration dependence of the NH(4)Cl-induced upshift of the S(2) state carboxylate mode at 1365 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectra of NH(4)Cl-treated PSII samples. Our results provided strong evidence that NH(3) induced this upshift in the spectra of NH(4)Cl-treated PSII samples at 250 K. Moreover, our low-frequency FTIR results showed that the Mn-O-Mn cluster vibrational mode at 606 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectrum of the NaCl control PSII sample was diminished in those samples treated with NH(4)Cl. Our results suggest that NH(3) induced a significant alteration on the core structure of the Mn(4)CaO(5) cluster in PSII. The implication of our findings on the structure of the NH(3)-binding site on the OEC in PSII will be discussed.  相似文献   

3.
Fang CH  Chiang KA  Hung CH  Chang K  Ke SC  Chu HA 《Biochemistry》2005,44(28):9758-9765
Ammonia is an inhibitor of water oxidation and a structural analogue for substrate water, making it a valuable probe for the structural properties of the possible substrate-binding site on the oxygen-evolving complex (OEC) in photosystem II (PSII). By using the NH(3)-induced upshift of the 1365 cm(-)(1) IR mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum and the NH(3)-modified S(2) state EPR signals of PSII as spectral probes, we found that ethylene glycol has clear effects on the binding properties of the NH(3)-specific site on the OEC. Our results show that in PSII samples containing 30% (v/v) ethylene glycol, the affinity of the NH(3)-specific binding site on the OEC is estimated to be more than 10 times lower than that in PSII samples containing 0.4 M sucrose. In addition, our results show that the NH(3)-induced upshift of the 1365 cm(-)(1) IR mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum is dependent on the concentration of ethylene glycol, but not dependent on the concentration of sucrose (up to 1.5 M) or methanol (up to 5.4 M). By comparing the concentration dependence of sucrose and ethylene glycol on NH(3)-induced spectral change and also by comparing the sucrose and ethylene glycol data at similar concentrations ( approximately 1 M), we conclude that ethylene glycol has a clear effect on the NH(3)-induced spectral changes. Furthermore, our results also show that ethylene glycol alters the steric requirement of the amine effect on the upshift of the 1365 cm(-)(1) mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum. In PSII samples containing 30% (v/v) ethylene glycol, only NH(3), not other bulkier amines (e.g., Tris, AEPD, and CH(3)NH(2)), has a clear effect on the upshift of the 1365 cm(-)(1) mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum; in contrast, in PSII samples containing 0.4 M sucrose, both NH(3) and CH(3)NH(2) have a clear effect. On the basis of the results mentioned above, we propose that ethylene glycol acts directly or indirectly to decrease the affinity or limit the accessibility of NH(3) and CH(3)NH(2) to the NH(3)-specific binding site on the OEC in PSII. Finally, we also applied the same approach to test whether methanol is able to compete with ammonia on its binding site on the OEC. We found that 4% (v/v) methanol does not have any significant effect on the NH(3)-induced upshift of the 1365 cm(-)(1) mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum and the NH(3)-modified S(2) state g = 2 multiline EPR signal. Our results suggest that methanol is unable to compete with NH(3) upon binding to the Mn site of the OEC that gives rise to the altered S(2) state g = 2 multiline EPR signal.  相似文献   

4.
Chu HA  Feng YW  Wang CM  Chiang KA  Ke SC 《Biochemistry》2004,43(34):10877-10885
Light-induced Fourier transform infrared difference spectroscopy has been applied to studies of ammonia effects on the oxygen-evolving complex (OEC) of photosystem II (PSII). We found that NH(3) induced characteristic spectral changes in the region of the symmetric carboxylate stretching modes (1450-1300 cm(-1)) of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra of PSII. The S(2) state carboxylate mode at 1365 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectrum of the controlled samples was very likely upshifted to 1379 cm(-1) in that of NH(3)-treated samples; however, the frequency of the corresponding S(1) carboxylate mode at 1402 cm(-1) in the same spectrum was not significantly affected. These two carboxylate modes have been assigned to a Mn-ligating carboxylate whose coordination mode changes from bridging or chelating to unidentate ligation during the S(1) to S(2) transition [Noguchi, T., Ono, T., and Inoue, Y. (1995) Biochim. Biophys. Acta 1228, 189-200; Kimura, Y., and Ono, T.-A. (2001) Biochemistry 40, 14061-14068]. Therefore, our results show that NH(3) induced significant structural changes of the OEC in the S(2) state. In addition, our results also indicated that the NH(3)-induced spectral changes of the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are dependent on the temperature of the FTIR measurement. Among the temperatures we measured, the strongest effect was seen at 250 K, a lesser effect was seen at 225 K, and little or no effect was seen at 200 K. Furthermore, our results also showed that the NH(3) effects on the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are dependent on the concentrations of NH(4)Cl. The NH(3)-induced upshift of the 1365 cm(-1) mode is apparent at 5 mM NH(4)Cl and is completely saturated at 100 mM NH(4)Cl concentration. Finally, we found that CH(3)NH(2) has a small but clear effect on the spectral change of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum of PSII. The effects of amines on the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra (NH(3) > CH(3)NH(2) > AEPD and Tris) are inverse proportional to their size (Tris approximately AEPD > CH(3)NH(2) > NH(3)). Therefore, our results showed that the effects of amines on the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are sterically selective for small amines. On the basis of the correlations between the conditions (dependences on the excitation temperature and NH(3) concentration and the steric requirement for the amine effects) that give rise to the NH(3)-induced upshift of the 1365 cm(-)(1) mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII and the conditions that give rise to the altered S(2) state multiline EPR signal, we propose that the NH(3)-induced upshift of the 1365 cm(-1) mode is caused by the binding of NH(3) to the site on the Mn cluster that gives rise to the altered S(2) state multiline EPR signal. In addition, we found no significant NH(3)-induced change in the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum at 200 K. Under this condition, the OEC gives rise to the NH(3)-stabilized g = 4.1 EPR signal and a suppressed g = 2 multiline EPR signal. Our results suggest that the structural difference of the OEC between the normal g = 2 multiline form and the NH(3)-stabilized g = 4.1 form is small.  相似文献   

5.
Ca(2+) and Cl(-) ions are essential elements for the oxygen evolution activity of photosystem II (PSII). It has been demonstrated that these ions can be exchanged with Sr(2+) and Br(-), respectively, and that these ion exchanges modify the kinetics of some electron transfer reactions at the Mn?Ca cluster level (Ishida et al., J. Biol. Chem. 283 (2008) 13330-13340). It has been proposed from thermoluminescence experiments that the kinetic effects arise, at least in part, from a decrease in the free energy level of the Mn(4)Ca cluster in the S? state though some changes on the acceptor side were also observed. Therefore, in the present work, by using thin-layer cell spectroelectrochemistry, the effects of the Ca(2+)/Sr(2+) and Cl(-)/Br(-) exchanges on the redox potential of the primary quinone electron acceptor Q(A), E(m)(Q(A)/Q(A)(-)), were investigated. Since the previous studies on the Ca(2+)/Sr(2+) and Cl(-)/Br(-) exchanges were performed in PsbA3-containing PSII purified from the thermophilic cyanobacterium Thermosynechococcus elongatus, we first investigated the influences of the PsbA1/PsbA3 exchange on E(m)(Q(A)/Q(A)(-)). Here we show that i) the E(m)(Q(A)/Q(A)(-)) was up-shifted by ca. +38mV in PsbA3-PSII when compared to PsbA1-PSII and ii) the Ca(2+)/Sr(2+) exchange up-shifted the E(m)(Q(A)/Q(A)(-)) by ca. +27mV, whereas the Cl(-)/Br(-) exchange hardly influenced E(m)(Q(A)/Q(A)(-)). On the basis of the results of E(m)(Q(A)/Q(A)(-)) together with previous thermoluminescence measurements, the ion-exchange effects on the energetics in PSII are discussed.  相似文献   

6.
Suzuki H  Taguchi Y  Sugiura M  Boussac A  Noguchi T 《Biochemistry》2006,45(45):13454-13464
A Ca(2+) ion is an indispensable element in the oxygen-evolving Mn cluster in photosystem II (PSII). To investigate the structural relevance of Ca(2+) to the Mn cluster, the effects of Sr(2+) substitution for Ca(2+) on the structures and reactions of ligands to the Mn cluster during the S-state cycle were investigated using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. FTIR difference spectra representing the four S-state transitions, S(1) --> S(2), S(2) --> S(3), S(3) --> S(0), and S(0) --> S(1), were recorded by applying four consecutive flashes either to PSII core complexes from Thermosynechococcus elongatus or to PSII-enriched membranes from spinach. The spectra were also recorded using biosynthetically Sr(2+)-substituted PSII core complexes from T. elongatus and biochemically Sr(2+)-substituted PSII membranes from spinach. Several common spectral changes upon Sr(2+) substitution were observed in the COO(-) stretching region of the flash-induced spectra for both preparations, which were best expressed in Ca(2+)-minus-Sr(2+) double difference spectra. The significant intensity changes in the symmetric COO(-) peaks at approximately 1364 and approximately 1418 cm(-)(1) at the first flash were reversed as opposite intensity changes at the third flash, and the slight shift of the approximately 1446 cm(-)(1) peak at the second flash corresponded to the similar but opposite shift at the fourth flash. Analyses of these changes suggest that there are at least three carboxylate ligands whose structures are significantly perturbed by Ca(2+)/Sr(2+) exchange. They are (1) the carboxylate ligand having a bridging or unidentate structure in the S(2) and S(3) states and perturbed in the S(1) --> S(2) and S(3) --> S(0) transitions, (2) that with a chelating or bridging structure in the S(1) and S(0) states and perturbed also in the S(1) --> S(2) and S(3) --> S(0) transitions, and (3) that with a chelating structure in the S(3) and S(0) states and changes in the S(2) --> S(3) and S(0) --> S(1) transitions. Taking into account the recent FTIR studies using site-directed mutagenesis and/or isotope substitution [Chu et al. (2004) Biochemistry 43, 3152-3116; Kimura et al. (2005) J. Biol. Chem. 280, 2078-2083; Strickler et al. (2006) Biochemistry 45, 8801-8811], it was concluded that these carboxylate groups do not originate from either D1-Ala344 (C-terminus) or D1-Glu189, which are located near the Ca(2+) ion in the X-ray crystallographic model of the Mn cluster. It was thus proposed that if the X-ray model is correct, the above carboxylate groups sensitive to Sr(2+) substitution are ligands to the Mn ions strongly coupled to the Ca(2+) ion rather than direct ligands to Ca(2+).  相似文献   

7.
Lee CI  Lakshmi KV  Brudvig GW 《Biochemistry》2007,46(11):3211-3223
Photosynthetic oxygen evolution in photosystem II (PSII) takes place in the oxygen-evolving complex (OEC) that is comprised of a tetranuclear manganese cluster (Mn4), a redox-active tyrosine residue (YZ), and Ca2+ and Cl- cofactors. The OEC is successively oxidized by the absorption of 4 quanta of light that results in the oxidation of water and the release of O2. Ca2+ is an essential cofactor in the water-oxidation reaction, as its depletion causes the loss of the oxygen-evolution activity in PSII. In recent X-ray crystal structures, Ca2+ has been revealed to be associated with the Mn4 cluster of PSII. Although several mechanisms have been proposed for the water-oxidation reaction of PSII, the role of Ca2+ in oxygen evolution remains unclear. In this study, we probe the role of Ca2+ in oxygen evolution by monitoring the S1 to S2 state transition in PSII membranes and PSII core complexes upon inhibition of oxygen evolution by Dy3+, Cu2+, and Cd2+ ions. By using a cation-exchange procedure in which Ca2+ is not removed prior to addition of the studied cations, we achieve a high degree of reversible inhibition of PSII membranes and PSII core complexes by Dy3+, Cu2+, and Cd2+ ions. EPR spectroscopy is used to quantitate the number of bound Dy3+ and Cu2+ ions per PSII center and to determine the proximity of Dy3+ to other paramagnetic centers in PSII. We observe, for the first time, the S2 state multiline electron paramagnetic resonance (EPR) signal in Dy3+- and Cd2+-inhibited PSII and conclude that the Ca2+ cofactor is not specifically required for the S1 to S2 state transition of PSII. This observation provides direct support for the proposal that Ca2+ plays a structural role in the early S-state transitions, which can be fulfilled by other cations of similar ionic radius, and that the functional role of Ca2+ to activate water in the O-O bond-forming reaction that occurs in the final step of the S state cycle can only be fulfilled by Ca2+ and Sr2+, which have similar Lewis acidities.  相似文献   

8.
Recent FTIR studies have provided evidence that the C-terminal alpha-COO(-) group of the D1 polypeptide at D1-Ala344 is a unidentate ligand of a Mn ion in photosystem II [Chu, H.-A., Hiller, W., and Debus, R. J. (2004) Biochemistry 43, 3152-3166; Kimura, Y., Mizusawa, N., Yamanari, T., Ishii, A., and Ono, T.-A. (2005) J. Biol. Chem. 280, 2078-2083]. However, the FTIR data could not exclude Ca ligation. Furthermore, the recent approximately 3.5 A X-ray crystallographic structural model positions the alpha-COO(-) group of D1-Ala344 near a Ca ion [Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Science 303, 1831-1838]. Therefore, to conclusively establish whether the alpha-COO(-) group of D1-Ala344 ligates Mn or Ca, the symmetric carboxylate stretching mode of the alpha-COO(-) group of D1-Ala344 was identified in the S(2)-minus-S(1) FTIR difference spectrum of PSII particles having Sr substituted for Ca. Cells of the cyanobacterium Synechocystis sp. PCC 6803 were propagated in media having Sr substituted for Ca and containing either l-[1-(13)C]alanine or unlabeled ((12)C) alanine. The S(2)-minus-S(1) FTIR difference spectra of the purified PSII particles show that substituting Sr for Ca alters several carboxylate stretching modes, including some that may correspond to one or more metal ligands, but importantly does not alter the symmetric carboxylate stretching mode of the alpha-COO(-) group of D1-Ala344. In unlabeled PSII particles, this mode appears at approximately 1356 cm(-)(1) in the S(1) state and at either approximately 1337 or approximately 1320 cm(-)(1) in the S(2) state, irrespective of whether the PSII particles contain Ca or Sr. These data are inconsistent with Ca ligation and show, therefore, that the C-terminal alpha-COO(-) group of the D1 polypeptide ligates a Mn ion. These data also show that substituting Ca with the larger Sr ion perturbs other unidentified carboxylate groups, at least one of which may ligate the Mn(4) cluster.  相似文献   

9.
Popelkova H  Commet A  Kuntzleman T  Yocum CF 《Biochemistry》2008,47(47):12593-12600
Eukaryotic PsbO, the photosystem II (PSII) manganese-stabilizing protein, has two N-terminal sequences that are required for binding of two copies of the protein to PSII [Popelkova, H., et al. (2002) Biochemistry 41, 10038-10045; Popelkova, H., et al. (2003) Biochemistry 42, 6193-6200]. In the work reported here, a set of selected N-terminal truncation mutants of PsbO that affect subunit binding to PSII were used to determine the effects of PsbO stoichiometry on the Mn, Ca(2+), and Cl(-) cofactors and to characterize the roles of each of the PsbO subunits in PSII function. Results of the experiments with the PsbO-depleted PSII membranes reconstituted with the PsbO deletion mutants showed that the presence of PsbO does not affect Ca(2+) retention by PSII in steady-state assays of activity, nor is it required for Ca(2+) to protect the Mn cluster against reductive inhibition in darkness. In contrast to the results with Ca(2+), PsbO increases the affinity of Cl(-) for the active site of the O(2)-evolving complex (OEC) as expected. These results together with other data on activity retention suggest that PsbO can stabilize the Mn cluster by facilitating retention of Cl(-) in the OEC. The data presented here indicate that each of two copies of PsbO has a distinctive function in PSII. Binding of the first PsbO subunit fully stabilizes the Mn cluster and enhances Cl(-) retention, while binding of the second subunit optimizes Cl(-) retention, which in turn maximizes O(2) evolution activity. Nonspecific binding of some PsbO truncation mutants to PSII has no functional significance.  相似文献   

10.
Extraction of Ca(2+) from the O(2)-evolving complex (OEC) of photosystem II (PSII) membranes with 2 M NaCl in the light (PSII(-Ca/NaCl)) results in 90% inhibition of the O(2)-evolution reaction. However, electron transfer from the donor to acceptor side of PSII, measured as the reduction of the exogenous acceptor 2,6-dichlorophenolindophenol (DCIP) under continuous light, is inhibited by only 30%. Thus, calcium extraction from the OEC inhibits the synthesis of molecular O(2) but not the oxidation of a substrate we term X, the source of electrons for DCIP reduction. The presence of electron transfer across PSII(-Ca/NaCl) membranes was demonstrated using fluorescence induction kinetics, a method that does not require an artificial acceptor. The calcium chelator, EGTA (5 mM), when added to PSII(-Ca/NaCl) membranes, does not affect the inhibition of O(2) evolution by NaCl but does inhibit DCIP reduction up to 92% (the reason why electron transport in Ca(2+)-depleted materials has not been noticed before). Another chelator, sodium citrate (citrate/low pH method of calcium extraction), also inhibits both O(2) evolution and DCIP reduction. The role of all buffer components (including bicarbonate and sucrose) as possible sources of electrons for PSII(-Ca/NaCl) membranes was investigated, but only the absence of chloride anions strongly inhibited the rate of DCIP reduction. Substitution of other anions for chloride indicates that Cl(-) serves its well-known role as an OEC cofactor, but it is not substrate X. Multiple turnover flash experiments have shown a period of four oscillations of the fluorescence yield (both the maximum level, F(max), and the fluorescence level measured 50 s after an actinic flash in the presence of DCMU) in native PSII membranes, reflecting the normal function of the OEC, but the absence of oscillations in PSII(-Ca/NaCl) samples. Thus, PSII(-Ca/NaCl) samples do not evolve O(2) but do transfer electrons from the donor to acceptor sides and exhibit a disrupted S-state cycle. We explain these results as follows. In Ca(2+)-depleted PSII membranes, obtained without chelators, the oxidation of the OEC stops after the absorption of three quanta of light (from the S1 state), which should convert the native OEC to the S4 state. An one-electron oxidation of the water molecule bound to the Mn cluster then occurs (the second substrate water molecule is absent due to the absence of calcium), and the OEC returns to the S3 state. The appearance of a sub-cycle within the S-state cycle between S3-like and S4-like states supplies electrons (substrate X is postulated to be OH(-)), explains the absence of O(2) production, and results in the absence of a period of four oscillation of the normal functional parameters, such as the fluorescence yield or the EPR signal from S2. Chloride anions probably keep the redox potential of the Mn cluster low enough for its oxidation by Y(Z)(*).  相似文献   

11.
Suzuki H  Nagasaka MA  Sugiura M  Noguchi T 《Biochemistry》2005,44(34):11323-11328
Fourier transform infrared difference spectra upon single reduction of the secondary quinone electron acceptor Q(B) in photosystem II (PSII), without a contribution from the electron donor-side signals, were obtained for the first time using Mn-depleted PSII core complexes of the thermophilic cyanobacterium Thermosynechococcus elongatus. The Q(B)(-)/Q(B) difference spectrum exhibited a strong C...O stretching band of the semiquinone anion at 1480 cm(-)(1), the frequency higher by 2 cm(-)(1) than that of the corresponding band of Q(A)(-), in agreement with the previous S(2)Q(B)(-)/S(1)Q(B) spectrum of the PSII membranes of spinach [Zhang, H., Fischer, G., and Wydrzynski, T. (1998) Biochemistry 37, 5511-5517]. Also, several peaks originating from the Fermi resonance of coupled His modes with its strongly H-bonded NH vibration were observed in the 2900-2600 cm(-)(1) region, where the peak frequencies were higher by 7-24 cm(-)(1) compared with those of the Q(A)(-)/Q(A) spectrum. These frequency differences suggest that H-bond interactions of the CO groups, especially with a His side chain, are different between Q(B)(-) and Q(A)(-). Furthermore, a prominent positive peak was observed at 1745 cm(-)(1) in the C=O stretching region of COOH or ester groups in the Q(B)(-)/Q(B) spectrum. The peak frequency was unaffected by D(2)O substitution, indicating that this peak does not arise from a COOH group but probably from the 10a-ester C=O group of the pheophytin molecule adjacent to Q(B). The absence of protonation of carboxylic amino acids upon Q(B)(-) formation in contrast to the previous observation in the purple bacterium Rhodobacter sphaeroides suggests that the protonation mechanism of Q(B) in PSII is different from that of bacterial reaction centers.  相似文献   

12.
Calcium is an essential cofactor in the oxygen-evolving complex (OEC) of photosystem II (PSII). The removal of Ca2+ or its substitution by any metal ion except Sr2+ inhibits oxygen evolution. We used steady-state enzyme kinetics to measure the rate of O2 evolution in PSII samples treated with an extensive series of mono-, di-, and trivalent metal ions in order to determine the basis for the affinity of metal ions for the Ca2+-binding site. Our results show that the Ca2+-binding site in PSII behaves very similarly to the Ca2+-binding sites in other proteins, and we discuss the implications this has for the structure of the site in PSII. Activity measurements as a function of time show that the binding site achieves equilibrium in 4 h for all of the PSII samples investigated. The binding affinities of the metal ions are modulated by the 17 and 23 kDa extrinsic polypeptides; their removal decreases the free energy of binding of the metal ions by 2.5 kcal/mol, but does not significantly change the time required to reach equilibrium. Monovalent ions are effectively excluded from the Ca2+-binding site, exhibiting no inhibition of O2 evolution. Di- and trivalent metal ions with ionic radii similar to that of Ca2+ (0.99 A) bind competitively with Ca2+ and have the highest binding affinity, while smaller metal ions bind more weakly and much larger ones do not bind competitively. This is consistent with a size-selective Ca2+-binding site that has a rigid array of coordinating ligands. Despite the large number of metal ions that competitively replace Ca2+ in the OEC, only Sr2+ is capable of partially restoring activity. Comparing the physical characteristics of the metal ions studied, we identify the pK(a) of the aqua ion as the factor that determines the functional competence of the metal ion. This suggests that Ca2+ is directly involved in the chemistry of water oxidation and is not only a structural cofactor in the OEC. We propose that the role of Ca2+ is to act as a Lewis acid, binding a substrate water molecule and tuning its reactivity.  相似文献   

13.
The core complex of photosystem II (PSII) was purified from thermophilic cyanobacterium Thermosynechococcus elongatus grown in Sr(2+)-containing and Ca(2+)-free medium. Functional in vivo incorporation of Sr(2+) into the oxygen-evolving complex (OEC) was confirmed by EPR analysis of the isolated and highly purified SrPSII complex in agreement with the previous study of Boussac et al. [J. Biol. Chem. 279 (2004) 22809-22819]. Three-dimensional crystals of SrPSII complex were obtained which diffracted to 3.9 A and belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a=133.6 A, b=236.6 A, c=307.8 A. Anomalous diffraction data collected at the Sr K-X-ray absorption edge identified a novel Sr(2+)-binding site which, within the resolution of these data (6.5 A), is consistent with the positioning of Ca(2+) in the recent crystallographic models of PSII [Ferreira et al. Science 303 (2004) 1831-1838, Loll et al. Nature 438 (2005) 1040-1044]. Fluorescence measurements on SrPSII crystals confirmed that crystallized SrPSII was active in transferring electrons from the OEC to the acceptor site of the reaction centre. However, SrPSII showed altered functional properties of its modified OEC in comparison with that of the CaPSII counterpart: slowdown of the Q(A)-to-Q(B) electron transfer and stabilized S(2)Q(A)(-) charge recombination.  相似文献   

14.
The molecular mechanism of the water oxidation reaction in photosystem II (PSII) of green plants remains a great mystery in life science. This reaction is known to take place in the oxygen evolving complex (OEC) incorporating four manganese, one calcium and one chloride cofactors, that is light-driven to cycle four intermediates, designated S(0) through S(4), to produce four protons, five electrons and lastly one molecular oxygen, for indispensable resources in biosphere. Recent advancements of X-ray crystallography models established the existence of a catalytic Mn(4)Ca cluster ligated by seven protein amino acids, but its functional structure is not yet resolved. The (18)O exchange rates of two substrate water molecules were recently measured for four S(i)-state samples (i=0-3) leading to (34)O(2) and (36)O(2) formations, revealing asymmetric substrate binding sites significantly depending on the S(i)-state. In this paper, we present a chemically complete model for the Mn(4)Ca cluster and its surrounding enzyme field, which we found out from some possible models by using the hybrid density functional theoretic geometry optimization method to confirm good agreements with the 3.0 A resolution PSII model [B. Loll, J. Kern, W. Saenger, A. Zouni , J. Biesiadka, Nature 438 (2005) 1040-1044] and the S-state dependence of (18)O exchange rates [W. Hillier and T. Wydrzynski, Phys. Chem. Chem. Phys. 6 (2004) 4882-4889]. Furthermore, we have verified that two substrate water molecules are bound to asymmetric cis-positions on the terminal Mn ion being triply bridged (mu-oxo, mu-carboxylato, and a hydrogen bond) to the Mn(3)CaO(3)(OH) core, by developing a generalized theory of (18)O exchange kinetics in OEC to obtain an experimental evidence for the cross exchange pathway from the slow to the fast exchange process. Some important experimental data will be discussed in terms of this model and its possible tautomers, to suggest that a cofactor, Cl(-) ion, may be bound to CP43-Arg357 nearby Ca(2+) ion and that D1-His337 may be used to trap a released proton only in the S(2)-state.  相似文献   

15.
Kimura Y  Hasegawa K  Ono TA 《Biochemistry》2002,41(18):5844-5853
Effects of Ca2+ depletion and substitution with other metal cations on the structure of the protein matrices of the oxygen-evolving complex (OEC) and their corresponding changes upon the S1 to S2 transition were examined using Fourier transform infrared (FTIR) spectroscopy. Ca2+ depletion and further supplementation with Li+, Na+, Mg2+, Ca2+, or Sr2+ did not significantly affect the typical vibrational features in the double difference S2/S1 spectrum, including the symmetric [1365(+)/1404(-) cm(-1)] and the asymmetric [1587(+)/1566(-) cm(-1)] stretching modes of the carboxylate ligand and the amide I and II modes of the backbone polypeptides. On the other hand, supplementation with K+, Rb+, Cs+, or Ba2+ significantly modified the S2/S1 spectrum, in which the carboxylate modes disappeared and the amide I and II modes were modified. Results indicate that the binding of metal cations that have ionic radii larger than that of Ca2+ to the Ca2+ site induces perturbations in the protein matrices in the vicinity of the Mn cluster to interrupt the characteristic structural and/or conformational changes upon the oxidation of the Mn cluster accompanied with the S1 to S2 transition. The spectrum was also altered by the supplementation of Cd2+, which has an ionic radius comparable to that of Ca2+. A single-pulse-induced S2/S1 difference spectrum revealed that bands that have been assigned to the vibrational modes for the Y(Z) tyrosine and the histidine ligand for the Mn cluster were not induced in the K+-supplemented membranes, although the histidine band is likely to be preserved in the Ca2+-depleted membranes. The Y(Z) band was considerably small in the double difference S2/S1 spectrum in the Ca2+-depleted and the cation-substituted membranes but distinctively present in the Sr2+- or Ca2+-replenished membranes. Furthermore, cation supplementation induced several new bands that disappeared following the Ca2+ replenishment. These results suggest that the proper organization of the hydrogen bond network within OEC for the water oxidation chemistry requires the Ca2+ ion and indicate that the role of Ca2+ is not purely structurally defined by the physical properties of the ion, such as valence and ionic radius. On the basis of these and other findings, we propose that Ca2+ is necessary for the formation of the hydrogen bond network that is involved in the reaction step of water oxidation.  相似文献   

16.
Since the end of the 1950s hydrogencarbonate ('bicarbonate') is discussed as a possible cofactor of photosynthetic water-splitting, and in a recent X-ray crystallography model of photosystem II (PSII) it was displayed as a ligand of the Mn(4)O(x)Ca cluster. Employing membrane-inlet mass spectrometry (MIMS) and isotope labelling we confirm the release of less than one (~0.3) HCO(3)(-) per PSII upon addition of formate. The same amount of HCO(3)(-) release is observed upon formate addition to Mn-depleted PSII samples. This suggests that formate does not replace HCO(3)(-) from the donor side, but only from the non-heme iron at the acceptor side of PSII. The absence of a firmly bound HCO(3)(-) is corroborated by showing that a reductive destruction of the Mn(4)O(x)Ca cluster inside the MIMS cell by NH(2)OH addition does not lead to any CO(2)/HCO(3)(-) release. We note that even after an essentially complete HCO(3)(-)/CO(2) removal from the sample medium by extensive degassing in the MIMS cell the PSII samples retain > or =75% of their initial flash-induced O(2)-evolving capacity. We therefore conclude that HCO(3)(-) has only 'indirect' effects on water-splitting in PSII, possibly by being part of a proton relay network and/or by participating in assembly and stabilization of the water-oxidizing complex.  相似文献   

17.
The active site for water oxidation in photosystem II goes through five sequential oxidation states (S(0) to S(4)) before O(2) is evolved. It consists of a Mn(4)Ca cluster close to a redox-active tyrosine residue (Tyr(Z)). Cl(-) is also required for enzyme activity. To study the role of Ca(2+) and Cl(-) in PSII, these ions were biosynthetically substituted by Sr(2+) and Br(-), respectively, in the thermophilic cyanobacterium Thermosynechococcus elongatus. Irrespective of the combination of the non-native ions used (Ca/Br, Sr/Cl, Sr/Br), the enzyme could be isolated in a state that was fully intact but kinetically limited. The electron transfer steps affected by the exchanges were identified and then investigated by using time-resolved UV-visible absorption spectroscopy, time-resolved O(2) polarography, and thermoluminescence spectroscopy. The effect of the Ca(2+)/Sr(2+) and Cl(-)/Br(-) exchanges was additive, and the magnitude of the effect varied in the following order: Ca/Cl < Ca/Br < Sr/Cl < Sr/Br. In all cases, the rate of O(2) release was similar to that of the S(3)Tyr(Z)(.) to S(0)Tyr(Z) transition, with the slowest kinetics (i.e. the Sr/Br enzyme) being approximately 6-7 slower than in the native Ca/Cl enzyme. This slowdown in the kinetics was reflected in a decrease in the free energy level of the S(3) state as manifest by thermoluminescence. These observations indicate that Cl(-) is involved in the water oxidation mechanism. The possibility that Cl(-) is close to the active site is discussed in terms of recent structural models.  相似文献   

18.
In spinach photosystem II (PSII) membranes, the tetranuclear manganese cluster of the oxygen-evolving complex (OEC) can be reduced by incubation with nitric oxide at -30 degrees C to a state which is characterized by an Mn(2)(II, III) EPR multiline signal [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587]. This state was recently assigned to the S(-)(2) state of the OEC [Schansker, G., Goussias, C., Petrouleas, V., and Rutherford, A. W. (2002) Biochemistry 41, 3057-3064]. On the basis of EPR spectroscopy and flash-induced oxygen evolution patterns, we show that a similar reduction process takes place in PSII samples of the thermophilic cyanobacterium Synechococcus elongatus at both -30 and 0 degrees C. An EPR multiline signal, very similar but not identical to that of the S(-)(2) state in spinach, was obtained with monomeric and dimeric PSII core complexes from S. elongatus only after incubation at -30 degrees C. The assignment of this EPR multiline signal to the S(-)(2) state is corroborated by measurements of flash-induced oxygen evolution patterns and detailed fits using extended Kok models. The small reproducible shifts of several low-field peak positions of the S(-)(2) EPR multiline signal in S. elongatus compared to spinach suggest that slight differences in the coordination geometry and/or the ligands of the manganese cluster exist between thermophilic cyanobacteria and higher plants.  相似文献   

19.
In the current X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is the only amino acid ligand of the oxygen-evolving Mn(4)Ca cluster that is not provided by the D1 polypeptide. To further explore the influence of this structurally unique residue on the properties of the Mn(4)Ca cluster, the CP43-E354Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray absorption, FTIR, and mass spectrometry. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild type. In addition, the oxygen flash yields exhibited normal period four oscillations having normal S state parameters, although the yields were lower, correlating with the mutant's lower steady-state rate (approximately 20% compared to wild type). Experiments conducted with H(2)(18)O showed that the fast and slow phases of substrate water exchange in CP43-E354Q thylakoid membranes were accelerated 8.5- and 1.8-fold, respectively, in the S(3) state compared to wild type. Purified oxygen-evolving CP43-E354Q PSII core complexes exhibited a slightly altered S(1) state Mn-EXAFS spectrum, a slightly altered S(2) state multiline EPR signal, a substantially altered S(2)-minus-S(1) FTIR difference spectrum, and an unusually long lifetime for the S(2) state (>10 h) in a substantial fraction of reaction centers. In contrast, the S(2) state Mn-EXAFS spectrum was nearly indistinguishable from that of wild type. The S(2)-minus-S(1) FTIR difference spectrum showed alterations throughout the amide and carboxylate stretching regions. Global labeling with (15)N and specific labeling with l-[1-(13)C]alanine revealed that the mutation perturbs both amide II and carboxylate stretching modes and shifts the symmetric carboxylate stretching modes of the α-COO(-) group of D1-Ala344 (the C-terminus of the D1 polypeptide) to higher frequencies by 3-4 cm(-1) in both the S(1) and S(2) states. The EPR and FTIR data implied that 76-82% of CP43-E354Q PSII centers can achieve the S(2) state and that most of these can achieve the S(3) state, but no evidence for advancement beyond the S(3) state was observed in the FTIR data, at least not in a majority of PSII centers. Although the X-ray absorption and EPR data showed that the CP43-E354Q mutation only subtly perturbs the structure and spin state of the Mn(4)Ca cluster in the S(2) state, the FTIR and H(2)(18)O exchange data show that the mutation strongly influences other properties of the Mn(4)Ca cluster, altering the response of numerous carboxylate and amide groups to the increased positive charge that develops on the cluster during the S(1) to S(2) transition and weakening the binding of both substrate water molecules (or water-derived ligands), especially the one that exchanges rapidly in the S(3) state. The FTIR data provide evidence that CP43-Glu354 coordinates to the Mn(4)Ca cluster in the S(1) state as a bridging ligand between two metal ions but provide no compelling evidence that this residue changes its coordination mode during the S(1) to S(2) transition. The H(2)(18)O exchange data provide evidence that CP43-Glu354 interacts with the Mn ion that ligates the substrate water molecule (or water-derived ligand) that is in rapid exchange in the S(3) state.  相似文献   

20.
The thermophilic cyanobacterium, Thermosynechococcus elongatus, has been grown in the presence of Sr2+ instead of Ca2+ with the aim of biosynthetically replacing the Ca2+ of the oxygen-evolving enzyme with Sr2+. Not only were the cells able to grow normally with Sr2+, they actively accumulated the ion to levels higher than those of Ca2+ in the normal cultures. A protocol was developed to purify a fully active Sr(2+)-containing photosystem II (PSII). The modified enzyme contained a normal polypeptide profile and 1 strontium/4 manganese, indicating that the normal enzyme contains 1 calcium/4 manganese. The Sr(2+)- and Ca(2+)-containing enzymes were compared using EPR spectroscopy, UV-visible absorption spectroscopy, and O2 polarography. The Ca2+/Sr2+ exchange resulted in the modification of the EPR spectrum of the manganese cluster and a slower turnover of the redox cycle (the so-called S-state cycle), resulting in diminished O2 evolution activity under continuous saturating light: all features reported previously by biochemical Ca2+/Sr2+ exchange in plant PSII. This allays doubts that these changes could be because of secondary effects induced by the biochemical treatments themselves. In addition, the Sr(2+)-containing PSII has other kinetics modifications: 1) it has an increased stability of the S3 redox state; 2) it shows an increase in the rate of electron donation from TyrD, the redox-active tyrosine of the D2 protein, to the oxygen-evolving complex in the S3-state forming S2; 3) the rate of oxidation of the S0-state to the S1-state by TyrD* is increased; and 4) the release of O2 is slowed down to an extent similar to that seen for the slowdown of the S3TyrZ* to S0TyrZ transition, consistent with the latter constituting the limiting step of the water oxidation mechanism in Sr(2+)-substituted enzyme as well as in the normal enzyme. The replacement of Ca2+ by Sr2+ appears to have multiple effects on kinetics properties of the enzyme that may be explained by S-state-dependent shifts in the redox properties of both the manganese complex and TyrZ as well as structural effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号