首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior ofMyiopharus doryphorae andM. aberrans, North American tachinid parasitoids of the Colorado potato beetle, was recorded under field and laboratory conditions throughout three growing seasons in western Massachusetts. Eight common behaviors associated with resting, searching, feeding, and larviposition were distinguished, which together accounted for nearly all daytime activity of the females of both tachinids. Several of these behaviors, and in particular larviposition, were closely related to temperature but differed between species. A sequence of five defensive behaviors by the different larval stages of the Colorado potato beetle prevented larviposition in 49% of resisted attempts and perhaps one-fourth of total larviposition attempts byMyiopharus species, yet both parasitoids were highly successful in allocating their progeny during most of the summer. Second- and third-instar beetle larvae were least effective in resisting larviposition. Females of bothMyiopharus species actively guarded recently parasitized hosts from otherMyiopharus females for a period of several minutes after larviposition during the last month of the growing season when second- and third-instar Colorado potato beetle larvae were most scarce. Laboratory studies based on the field observation that femaleM. aberrans doggedly pursued circum-diapausing adult beetles led to the first recorded account ofM. aberrans larvipositing in adult hosts. Flies gained access to a beetle’s vulnerable abdominal dorsum at the instant it lifted its elytra to initiate flight. The late-season switch ofM. aberrans to adult Colorado potato beetles contributed to a seasonal sequence of larviposition-related behaviors concordant with prevailing host densities, which should lend complementarity toM. doryphorae andM. aberrans as biological controls of pest populations.  相似文献   

2.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4-day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae-larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

3.
Parasitism, offspring sex ratio and superparasitism of the facultative autoparasitoid Encarsia tricolor Foërster (Hymenoptera: Aphelinidae) when given access to arenae with different proportions of the primary host (Trialeurodes vaporariorum (Westwood)) and two species of secondary hosts (E. tricolor and Encarsia formosa Gahan) were studied.Parasitism and offspring sex ratio were not affected by female age in the range 3–10 days old. When the secondary hosts were young E. tricolor pupae, eggs were mostly laid on primary hosts, so the offspring sex ratio was more female-biased than expected, and secondary hosts were not superparasitized at all. When the secondary hosts were fully grown E. formosa larvae, superparasitism was small and offspring sex ratio was more male-biased than expected. E. tricolor females were able to discriminate between hosts previously parasitized by themselves and non-parasitized hosts.  相似文献   

4.
M. E. Baur  K. V. Yeargan 《BioControl》1995,40(3-4):357-366
Three hymenopteran parasitoids that attackPlathypena scabra (F.) larvae often oviposit into consecutive instars of the host. We investigated host discrimination by adults and competitive interactions among larvae of these three parasitoid species. Avoidance of superparasitism byCotesia marginiventris (Cresson) andDiolcogaster facetosa Ashmead was tested. Females of each species were presented either withP. scabra parasitized by a different female of the same species 6 h earlier or unparasitizedP. scabra. Under these conditions,C. marginiventris attacked similar numbers of parasitized and unparasitized hosts.D. facetosa attacked 31% fewer parasitized than unparasitizedP. scabra. The avoidance of multiple parasitism byD. facetosa was studied in a similar bioassay. AlthoughD. facetosa females parasitized fewerP. scabra that had been attacked byC. marginiventris 6 h previously, the reduction in parasitism was only about 23%. In competition studies, immatureD. facetosa were better competitors than immatureC. marginiventris. Aleiodes (=Rogas) nolophanae (Ashmead) was an inferior competitor against bothC. marginiventris andD. facetosa when the duration between parasitism events was 1 h, but their competitive ability increased when they multiply parasitized hosts at least 32 h after the initial oviposition.  相似文献   

5.
Phymastichus coffea (LaSalle) (Hymenoptera: Eulophidae) is an African endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) that has been introduced to several countries to control this important pest. In the present study we performed a series of laboratory experiments in order to determine if there was evidence of host discrimination and superparasitism in P. coffea. Our choice experiments demonstrate that P. coffea females showed significant preference to attack unparasitized hosts, rather than those parasitized conspecifically. No significant preferences were detected in self-specific attacks between parasitized hosts and the healthy ones. A further dissection of hosts sequentially attacked either self or conspecifically, revealed that there were no more than two eggs per host. As P. coffea is a species that normally allocates two eggs per host in a single attack, we assumed that females were able to attack already parasitized hosts, but they did not lay eggs in them. Based on this fact, we conclude that there is a host discrimination ability in P. coffea females. With respect to the superparasitism by P. coffea using non-choice experiments, there was no significant difference between self-specific or conspecific attacks with respect to the control after one or two successive attacks. Conspecific attacks yielded the largest numbers of eggs after 3rd, 4th and 5th attacks and significant differences were found between this treatment and the control. The maximum number of eggs found in a single host was six individuals (conspecific treatment). These results confirmed that P. coffea usually laid two eggs per host; however, when there are no hosts available, conspecific attacks can result in the superparasitism in this species.  相似文献   

6.
The effects of macronutrient balance on nutrient intake and utilization were examined in Manduca sexta larvae parasitized by Cotesia congregata. Insects fed an artificial diet having constant total macronutrient, but with varied ratios of protein and carbohydrate, with altered diet consumption in response to excesses and deficiencies of the individual macronutrients. Bivariate plots of protein and carbohydrate consumption for non-parasitized larvae demonstrated a curvilinear relationship between points of nutrient intake for the various diets, and the larvae grew best on carbohydrate-biased diets. The relationship was linear for parasitized larvae with the growth uniform across diets. On protein-biased diets, the larvae regulated the nitrogen content, containing similar amounts of nitrogen regardless of consumption. Efficiency of nitrogen conversion in non-parasitized larvae was greatest on carbohydrate-biased diets, while nitrogen conversion by parasitized larvae was greatest with intermediate nutrient ratios. Accounting for carbohydrate consumption, the lipid content decreased as dietary carbohydrate increased, but parasitized larvae contained significantly less lipid. The total biomass of parasites developing in individual host larvae was positively correlated with host protein consumption, but the individual parasites were similar in size. Parasitism influences host nutrient consumption in a manner that achieves uniform host growth under diverse nutritional regimes, thereby constraining blood nutrient concentrations within limits suitable for parasite growth and development.  相似文献   

7.
A. Schopf 《BioControl》1991,36(4):593-604
The endoparasitic development ofG. liparidis was examined in 3 different host stages of gypsy moth larvae. Hatching ofG. liparidis-larvae occurred 3 to 5 days after oviposition in hosts parasitized during their premoulting period, and after 5 to 7 days in those parasitized in the 3rd midinstar state. The parasites generally moulted to the 2nd larval instar between the 11th and 13th day in the first group, and between the 13th and 15th day in the latter, when they had reached a volume of 0.04–0.05 mm3. The positive correlation between host ecdysis and the ecdysis of 1st stadium larvae to L2 suggested that host moulting influenced the development of the parasitoid larvae. Emergence from the host larvae occurred at 20°C after 27 days on average, and coincided with the parasites moulting to the 3rd instar. Five to 7 days after spinning their cocoons near the developmentally arrested host larva, the male, and 1 to 2 days later the female wasps eclosed. Due to the variation in the number of parasites per host, no difference was observed between the hosts parasitized at various stages; however, a tendency for later parasitized hosts to contain more parasite larvae was evident. The nutritional conditions of the moth parental generation influenced both host and parasite development. On the other hand no influence of host age was observed on emergence dates of larvae and wasps.   相似文献   

8.
Fopius arisanus (Sonan) and Diachasmimorpha tryoni (Cameron) are two important solitary endoparasitoids of tephritid fruit flies. The former species attacks host eggs while the latter attacks host larvae, and both species emerge as adults from the host puparium. This study investigated intrinsic competition between these two parasitoids, as well as aspects of intraspecific competition within each species in the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Parasitization by F. arisanus resulted in direct mortality of host eggs and prolonged development of host eggs and larvae. Superparasitism by F. arisanus was uncommon when mean parasitism per host patch was <50%, but increased with rising rates of parasitism. Superparasitism by D. tryoni was more common. In superparasitized hosts, supernumerary individuals of F. arisanus were killed through physiological suppression, while supernumerary larvae of D. tryoni were killed mainly through physical attack. In multiparasitized hosts, dissections showed that 81.6% of D. tryoni eggs in the presence of F. arisanus larvae died within 3 days, indicating physiological inhibition of egg hatch. Rearing results further showed that F. arisanus won almost all competitions against D. tryoni. The ratio of D. tryoni stings to ovipositions was lower in hosts not previously parasitized by F. arisanus than in parasitized hosts, suggesting that D. tryoni can discriminate against parasitized hosts. The mechanism that F. arisanus employs to eliminate D. tryoni is similar to that it uses against all other larval fruit fly parasitoids so far reported. The results are discussed in relation to the competitive superiority of early acting species in fruit fly parasitoids, and to a possible competitive-mediated mechanism underlying host shift by D. tryoni to attack non-target flies following the successful introduction of F. arisanus in Hawaii.  相似文献   

9.
Intraspecific host discrimination is frequently found in solitary parasitoids, but interspecific host discrimination, where female parasitoids recognize hosts already parasitized by females of other species, is rare. This particular behaviour appears to be adaptive only under specific circumstances. In this paper, we quantified intraspecific host discrimination in Anaphes n. sp. (Hymenoptera: Mymaridae), an endoparasitoid of the eggs of Listronotus oregonensis (LeConte) (Coleoptera: Curculionidae) and interspecific host discrimination toward eggs parasitized by Anaphes sordidatus (Girault), a sympatric species competing for the same resource in similar habitats. To examine host discrimination, choice experiments were used where the females had to choose between different categories of eggs (unparasitized, parasitized by Anaphes n. sp. or A. sordidatus). Superparasitism and multiparasitism were avoided in experiments where the female had a choice between unparasitized hosts and hosts parasitized by the same female, by a conspecific or by a female A. sordidatus. When all hosts available were parasitized, conspecific superparasitism occurred more often than self-superparasitism or multiparasitism. These results indicated that females Anaphes n. sp. were capable of self-, conspecific and interspecific discrimination. Self-discrimination followed recognition of an external marking while interspecific discrimination occurred mostly after insertion of the ovipositor. Interspecific discrimination could result from the recent speciation of these species and could be associated with a genotypic discrimination. This behavior appears to be adaptive because of the competition for common hosts between the two parasitoid species.  相似文献   

10.
Superparasitism refers to the oviposition behavior of parasitoid females who lay their eggs in an already parasitized host. Recent studies have shown that allocation of additional eggs to an already parasitized host may be beneficial under certain conditions. In the present work, mortality of Microplitis rufiventris wasps was significantly influenced by both host instar of Spodoptera littoralis larvae at parasitism and level of parasitism. In single parasitization, all host instars (first through sixth) were not equally suitable. Percentage of emergence success of wasp larvae was very high in parasitized first through third (highly suitable hosts), fell to 60% in the fourth instar (moderate suitable) and sharply decreased in the penultimate (5th) instars (marginally suitable). Singly parasitized sixth (last) instar hosts produced no wasp larvae (entirely unsuitable), pupated and eclosed to apparently normal adult moths. The scenario was different under superparasitism, whereas supernumerary individuals in the highly suitable hosts were almost always killed as first instars, superparasitization in unsuitable hosts (4th through 6th) had significant increase in number of emergence success of wasp larvae. Also, significantly greater number of parasitoid larvae successfully developed in unsuitable hosts containing three wasp eggs than counterparts containing two wasp eggs. Moreover, the development of surplus wasp larvae was siblicidal in earlier instars and nonsiblicidal gregarious one in the penultimate and last “sixth” instars. It is suggested that the optimal way for M. rufiventris to deal with high quality hosts (early instars) is to lay a single egg, while the optimal way to deal with low quality hosts (late instars) might be to superparasitize these hosts.  相似文献   

11.
The solitary parasitoids Aphidius erviHaliday (Hymenoptera: Aphidiidae) and Aphelinus asychisWalker (Hymenoptera: Aphelinidae) attacked but generally did not oviposit in pea aphids parasitized by the other species. Wasps selectively oviposited in unparasitized hosts when given a choice. Host discrimination depended on the recognition of internal cues. Females of A. asychiseither could not recognize or ignored A. ervi'sexternal host marking pheromone. Under most conditions, A. ervisurvived in superparasitized hosts, killing competing A. asychislarvae by physical attack and possibly physiological suppression. The outcome of larval competition was not affected by oviposition sequence or age difference between larvae; A. asychissurvived only when it had substantially completed larval development before the host was superparasitized by A. ervi.It is suggested that competition for host resources incurs a cost, for the winner in terms of reduced size or increased development time and for the loser in terms of lost progeny and searching time. Consequently, heterospecific host discrimination can be functional. Internal, and probably general, cues enable wasps to recognize and avoid oviposition in hosts already parasitized by an unrelated species.  相似文献   

12.
The competition between Gyranusoidea tebygi Noyes and Anagyrus mangicola Noyes (both Hymenoptera: Encyrtidae), exotic parasitoids of the mango mealybug, Rastrococcus invadens Williams (Homoptera: Pseudococcidae) was studied in the laboratory. No significant differences were found in the way each parasitoid species examined, attacked, stung, and oviposited into hosts, unparasitized, or previously parasitized by the other species. This suggests that neither species discriminates against each other. The total number of parasitoids of either species emerging did not significantly differ between competition experiments. When A. mangicola was the first parasitoid to attack a host, it had no significant advantage over G. tebygi. However, when A. mangicola followed G. tebygi by either 4 or 24 h, it clearly won. Overall A. mangicola won the competition in 70.9% of all cases. The level of the competition, either at the egg or larval stage, and factors responsible for the elimination of older larvae by younger ones could not be assessed in these experiments. The coexistence of the two parasitoids as complementary for the biological control of the mango mealybug is discussed.  相似文献   

13.
The effects of parasitism by the ArgentinianTrichopoda giacomellii(Blanchard) on reproduction and longevity of its host,Nezara viridula(L.) are reported. Parasitoid larvae suppress egg maturation, reducing by 70% the fecundity of mature female hosts during the period of larval development. Egg viability was not affected, but mating frequency was reduced by approximately 50%. When parasitized as newly eclosed adults, 84% of females fail to reproduce. In male hosts, fertility and mating frequency were not affected during the period of larval parasitoid development. In male and reproductively immature female hosts, death was coincident with, or occurred shortly after parasitoid emergence (2–4 days); in mature females, death occurred on average 2 weeks after larval parasitoid emergence. Host mortality occurred as a consequence of tissue damage incurred as the parasitoid larvae emerged from the host. Some individuals survived parasitism though no further reproductive activity (mating or oviposition) occurred. The effectiveness ofT. giacomelliias a biological control agent is discussed in relation to its impact on reproduction and survival of its host and contrasted with the action of otherTrichopodaspecies.  相似文献   

14.
While baited deer models were under observation nine Cephenemyia jellisoni Townsend (Diptera: Oestridae) females and seven C. apicata Bennett & Sabrosky engaged in a risk‐spreading larviposition behaviour by larvipositing on models only once and then flying away. Additionally, analysis of 225 unobserved larvipostions in which larvae were trapped in adhesive on the muzzles of deer models showed that 94% of C. apicata and 95% of C. jellisoni larviposited on a model only once. The number of single larvipositions was highly significant for both species. The principal adaptive significance of such risk‐spreading larviposition behaviour is that it spreads the reproductive output of a female among many hosts, and in years when adult eclosion and survival rates are low, it ensures that the larvae of the few surviving females will be distributed among a maximum number of hosts. Several other benefits of such behaviour also are discussed.  相似文献   

15.
The ovipositional patterns of the heteronomous hyperparasitoid Encarsia pergandiella Howard (Hymenoptera: Aphelinidae) in the presence of its primary host Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae), and in the presence or absence of conspecific and heterospecific secondary hosts (Encarsia formosa Gahan andEretmocerus mundus Mercet; Hymenoptera: Aphelinidae) were examined to assess host species preferences. Host preferences by heteronomous hyperparasitoids may affect the relative abundance of co-occurring parasitoid species and may influence host population suppression by the parasitoid community. Four combinations of hosts were tested: (1) B. argentifolii, E. mundus, and E. formosa, (2) B. argentifolii, E. formosa, and E. pergandiella, (3) B. argentifolii, E. mundus, and E. pergandiella, and, (4) B. argentifolii, E. mundus, E. formosa, and E. pergandiella. Arrays of hosts (24) were constructed in Petri dishes using leaf disks, each bearing one host. Thirty arrays of each host combination were exposed to single females for 6 h. All hosts were dissected to determine number of eggs per host. Encarsia pergandiella parasitized E. formosa hosts as frequently as E. mundus hosts. However, E. pergandiella parasitized either of these heterospecific hosts more frequently than conspecific hosts in treatments including two secondary host species. When a third parasitoid species was included in host arrays, E. pergandiella parasitized conspecific hosts as frequently as heterospecific hosts. Developmental stage of the hosts did not significantly influence host species selection by E. pergandiella. Our results indicate that host selection and oviposition by heteronomous hyperparasitoids like E. pergandiella, vary with the composition of hosts available for parasitization, and suggest a preference for heterospecific over conspecific secondary hosts.  相似文献   

16.
Females of ormiine tachinids fly to their hosts' calling songs and deposit larvae on the host or nearby. Two species,Ormia ochracea (Bigot) andO. depleta (Wiedemann), were reared for at least 8 generations, making them the first ormiines to be laboratory-propagated. Both were reared on natural hosts:Gryllus spp. field crickets (principallyG. rubens) forO. ochracea, andScapteriscus spp. mole crickets forO. depleta. Commercially rearedAcheta domesticus tested as hosts were less satisfactory. Hosts were parasitized manually or by confinement with flies or planidia (infective larvae). Transparent, cylindrical, sleeved cages were designed to accommodate parasitized hosts and pupae and adults ofO. ochracea. Cages were joined to allowO. ochracea to cycle through its stages with minimum handling and care. Parasitized hosts and pupae ofO. depleta were held in containers of damp sand; adults were held in cages developed forO. ochracea. Adults of both species were maintained on applesauce, sugar cubes, powdered milk, and water. The life cycle ofO. ochracea was about 31 days and ofO. depleta about 36 days, with the principal difference being the time required for planidia to complete development. InO. ochracea the adults emerged synchronously but inO. depleta males preceded females. In both species sex ratio was generally I: 1 and females lived slightly longer than males.O. depleta from our laboratory colony have been released for biological control of mole crickets.   相似文献   

17.
Clutch size decisions by Aphaereta minuta (Nees) (Hymenoptera: Braconidae), a polyphagous, gregarious, larval-pupal endoparasitoid, were studied under laboratory conditions. This parasitoid attacks larvae of Diptera inhabiting ephemeral microhabitats such as decaying plant and animal material. Females oviposit in young larval stages, but the eventual size of the host pupa determines host food availability for competing offspring. The size of the pupa can differ greatly between host species. We questioned how A. minuta females deal with this delay between the moment of oviposition and eventual host food availability, and whether they make clutch size decisions that benefit their fitness. It was shown that females indeed vary their clutch size considerably and in an adaptive way: (1) females lay larger clutches in larvae of host species that produce larger pupae, even when the larvae are the same size at the moment of oviposition, and (2) females lay larger clutches in larger larvae than in smaller larvae of the same host species. The latter seems functional as larvae parasitized at an older stage indeed developed into larger pupae compared to larvae parasitized at a younger stage. Furthermore, mortality of parasitized young host larvae was greater than that of both unparasitized larvae and parasitized older larvae. Under field conditions the risk of mortality of young host larvae is expected to be even higher due to the limited period of microhabitat (host food) availability, strong scramble type competition between the host larvae, and the longer period of being exposed to predation.  相似文献   

18.
Intraspecific host discrimination and larval competition were studied forMicroplitis croceipes (Cresson),Microplitis demolitor Wilkinson,Cotesia kazak (Telenga), andHyposoter didymator (Thunberg), solitary endoparasitoids of the tobacco budworm,Heliothis virescens (F.). In ovipositional choice tests between unparasitized and parasitized hosts, the mean number of ovipositions for unparasitized hosts was significantly higher than the mean number of ovipositions for hosts parasitized once by a conspecific female forC. kazak andH. didymator, demonstrating that females of these two species discriminate against hosts recently (within a few seconds) parasitized by a conspecific female. No significant difference in oviposition occurred between these two kinds of hosts forM. croceipes andM. demolitor. Mean percent parasitization by a second conspecific female was determined at 24, 48, and 72 h delays in time between the first and second female attack, and with no delay. Except for the 0 h time delay forC. kazak andH. didymator, percent parasitization by a second conspecific female generally decreased as the delay in time between the first and second female attack increased. When the second parasitization immediately followed the first, one parasitoid larva always eliminated the other by physical combat. With a 24 or 48 h delay between the first and second parasitization, the younger larva was the victor over the older larva forM. croceipes, M. demolitor andC. kazak in at least 50% of the cases. Elimination of older larvae by younger larva was by physical attack. However, forH. didymator, the older instar was the victor, and elimination of younger larvae by older larvae was probably through physiological processes. Further, older larvae ofH. didymator apparently killed the eggs of the second female by physiological processes.   相似文献   

19.
Laboratory experiments were conducted to examine the effect of ryegrass infection by the endophytic fungusAcremonium loliiLatch, Christensen and Samuels onMicroctonus hyperodaeLoan, a parasitoid ofListronotus bonariensis(Kuschel). Progression of parasitoids through the larval instar stages was shown to depend on adequate nutrition of the weevil host. Compared to confinement on endophyte-free ryegrass, parasitized weevils held on nonpreferred diets comprising leaf segments from endophyte-infected ryegrass and switchgrass contained parasitoid larvae with retarded development. Similarly, development of parasitoid larvae was retarded in hosts feeding on artificial diet containing diterpenes and alkaloids ofA. loliiorigin. Several diterpenes incorporated into the diet reduced survival of the parasitoid larvae. Attack rate of parasitoids was reduced when the quality of potential host weevils was compromised by confinement on nonpreferredA. lolii-infected ryegrass or without food for 14 days.  相似文献   

20.
Adults of the wood-boring beetlePhoracantha semipunctata F. showed variability in their attractiveness to five varieties ofEucalyptus when presented with an array of logs in a natural setting. Logs of two host varieties (E. camaldulensis Dehnhardt and the hybridE. trabutii) attracted two to three times more adult beetles than did logs of other host species (E. cladocalyx F.,E. grandis Hill ex Maiden andE. tereticornis Small). In the field, high oviposition rates byP. semipunctata adults resulted in severe competition among larvae. Larval survivorship was low in field logs ofE. trabutii and high inE. cladocalyx logs, although these hosts were the most and least attractive to the adult beetles, respectively. However, when logs were hand infested at low larval densities, survivorship ofP. semipunctata larvae was highest in logs of bothE. camaldulensis andE. trabutii. These findings suggest that adult beetles in the field were most attracted to those logs ofEucalyptus species that represented the highest quality hosts for their progeny under conditions of reduced larval competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号