共查询到2条相似文献,搜索用时 0 毫秒
1.
A coalescent dual process for a multi-type Moran model with genic selection is derived using a generator approach. This leads to an expansion of the transition functions in the Moran model and the Wright–Fisher diffusion process limit in terms of the transition functions for the coalescent dual. A graphical representation of the Moran model (in the spirit of Harris) identifies the dual as a strong dual process following typed lines backwards in time. An application is made to the harmonic measure problem of finding the joint probability distribution of the time to the first loss of an allele from the population and the distribution of the surviving alleles at the time of loss. Our dual process mirrors the Ancestral Selection Graph of [Krone, S. M., Neuhauser, C., 1997. Ancestral processes with selection. Theoret. Popul. Biol. 51, 210–237; Neuhauser, C., Krone, S. M., 1997. The genealogy of samples in models with selection. Genetics 145, 519–534], which allows one to reconstruct the genealogy of a random sample from a population subject to genic selection. In our setting, we follow [Stephens, M., Donnelly, P., 2002. Ancestral inference in population genetics models with selection. Aust. N. Z. J. Stat. 45, 395–430] in assuming that the types of individuals in the sample are known. There are also close links to [Fearnhead, P., 2002. The common ancestor at a nonneutral locus. J. Appl. Probab. 39, 38–54]. However, our methods and applications are quite different. This work can also be thought of as extending a dual process construction in a Wright–Fisher diffusion in [Barbour, A.D., Ethier, S.N., Griffiths, R.C., 2000. A transition function expansion for a diffusion model with selection. Ann. Appl. Probab. 10, 123–162]. The application to the harmonic measure problem extends a construction provided in the setting of a neutral diffusion process model in [Ethier, S.N., Griffiths, R.C., 1991. Harmonic measure for random genetic drift. In: Pinsky, M.A. (Ed.), Diffusion Processes and Related Problems in Analysis, vol. 1. In: Progress in Probability Series, vol. 22, Birkhäuser, Boston, pp. 73–81]. 相似文献
2.
The Wright–Fisher model of allele dynamics forms the basis for most theoretical and applied research in population genetics. Our understanding of genetic drift, and its role in suppressing the deterministic forces of Darwinian selection has relied on the specific form of sampling inherent to the Wright–Fisher model and its diffusion limit. Here we introduce and analyze a broad class of forward-time population models that share the same mean and variance as the Wright–Fisher model, but may otherwise differ. The proposed class unifies and further generalizes a number of population-genetic processes of recent interest, including the Λ and Cannings processes. Even though these models all have the same variance effective population size, they encode a rich diversity of alternative forms of genetic drift, with significant consequences for allele dynamics. We characterize in detail the behavior of standard population-genetic quantities across this family of generalized models. Some quantities, such as heterozygosity, remain unchanged; but others, such as neutral absorption times and fixation probabilities under selection, deviate by orders of magnitude from the Wright–Fisher model. We show that generalized population models can produce startling phenomena that differ qualitatively from classical behavior — such as assured fixation of a new mutant despite the presence of genetic drift. We derive the forward-time continuum limits of the generalized processes, analogous to Kimura’s diffusion limit of the Wright–Fisher process, and we discuss their relationships to the Kingman and non-Kingman coalescents. Finally, we demonstrate that some non-diffusive, generalized models are more likely, in certain respects, than the Wright–Fisher model itself, given empirical data from Drosophila populations. 相似文献