首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I tested the effect of the density of attached bacteria on the amount of algal immigration in the early development of a periphyton community in an artificial stream by manipulating the density of the attached bacteria. Three densities were prepared by regulation of the incubation time. A suspension of algae was added to the stream, and the degree of algal attachment to substrata was compared among the treatments. Algal immigration was proportional to the density of attached bacteria on all substrata (glass, PVC, and slate), although density differed among substrata. Analysis of covariance (dependent variable, amount of attached algae; covariate, bacterial density) showed significant relationship between amounts of attached algae and bacterial densities, but did not show significant differences in the slopes and adjusted means among substrata. When acrylic beads were added with the suspension of attached algae, significant linear correlation was obtained between the amount of attached algae and the amount of acrylic beads on the substrata. Algal immigration was due to non-selective adsorption by attached bacterial biofilms on substrata, although the extent of bacterial colonization and biofilm formation may be affected by the substrata and other environmental factors (e.g., current conditions and water temperature).  相似文献   

2.
古尔班通古特沙漠生物结皮不同发育阶段中藻类的变化   总被引:6,自引:2,他引:4  
通过在古尔班通古特沙漠南缘相同的地貌部位,选择裸沙、藻结皮、地衣结皮和苔藓结皮4种不同演替阶段中的生物结皮,研究了藻类的种类组成、优势种和生物量的变化.结果表明:(1)在结皮的不同演替阶段,藻类种类组成不同,其常见物种有一定的差异,如裸沙中藻类常见种是脆杆藻2(Fragilaria sp.2)、威利颤藻(Oscillatoria willei)和奥克席藻(Phormidium okenii),藻结皮的常见种是小聚球藻(Synechococcus parvus)、颗粒常丝藻 (Tychonema granulatum)、韧氏席藻(Phormidium retzli);同时在不同发育阶段亦存在一些特有种.(2)在裸沙发育到成熟生物结皮的过程中,藻类的优势物种也发生相应的变化.裸沙、藻结皮、地衣结皮和苔藓结皮的优势种分别是脆杆藻1(Fragilaria sp.1)、具鞘微鞘藻(Microcoleus vaginatus)、具鞘微鞘藻、眼点伪枝藻(Scytonema ocellatum)或集球藻(Palmellococcus miniatus).(3)藻类生物量在生物结皮不同演替阶段差异极显著(P<0.01),在裸沙中藻类生物量最低,随着生物结皮的逐渐发育,藻类生物量明显升高,地衣结皮最高,约是裸沙的8.3倍,当发育至苔藓结皮时,藻类生物量又有所下降.(4)在裸沙中基本为松散的沙粒,随着生物结皮的演替,丝状种类占明显的优势,尤其是具鞘微鞘藻,另外真菌菌丝和苔藓假根分别在地衣结皮和苔藓结皮中起着重要作用.  相似文献   

3.
Algal and plant production of nonphosphorus lipids in place of phospholipids is a physiological response to low phosphorus (P) availability. This response has been shown in culture and in marine plankton studies, but examples from freshwater algae remain minimal. Herein, we analyzed the nutrient contents and lipid composition of periphyton communities across the Florida Everglades ecosystem. We hypothesized that in phosphate‐poor areas, periphyton in high‐ and low‐sulfate waters would vary the proportion of sulfolipids (SLs) and betaine lipids (BLs), respectively. In phosphate‐enriched areas, periphyton would produce more phospholipids (PLs). We observed that at low‐P sites, PLs were a minor lipid component. In cyanobacteria‐dominated periphyton where sulfate was abundant, BLs were only slightly more abundant than SLs. However, in the low‐P, low‐sulfate area, periphyton were comprised to a greater degree green algae and diatoms, and BLs represented the majority of the total lipids. Even in a P‐rich area, PLs were a small component of periphyton lipid profiles. Despite the phosphorus limitations of the Everglades, periphyton can develop tremendous biomass. Our results suggest a physiological response by periphyton to oligotrophic conditions whereby periphyton increase abundances of nonphosphorus lipids and have reduced proportions of PLs.  相似文献   

4.
In our present studies, the recovery of photosynthetic activity after rehydration was demonstrated. We measured chlorophyll fluorescence, CO2 gas exchange and the pigment composition in the previously long-term air-dried cryptogamic inselberg crusts collected from two tropical areas. The cryptobiotic crusts were collected from different localities on similar ecological and climatic conditions from extreme habitats of inselbergs (outcrops). These inselbergs are characterized by a dry microclimate and are covered by scarce soil. We found that the ecophysiological responses of both cryptogamic inselberg crusts showed an extremely high degree of desiccation-tolerance due to the fast and full recovery during rehydration. The photosynthetic activity of the cryptobiotic crusts were restored and regained within 15 and 40 min, respectively, after rehydration. Photosynthetic activity of the crusts was retained at all applied light intensities when enough water was available, however the degree of the recovery was different between the crusts. Photosynthetic pigment contents were strongly and positively correlated with water content. Our results indicated that tropical desiccation-tolerant cryptogamic crusts found on inselberg rock surfaces have CO2 fixation ability in the range of cyanobacteria and lichens, suggesting that at a global scale they can assimilate CO2 in a significant amount.  相似文献   

5.
Yoshikuni Hodoki 《Hydrobiologia》2005,534(1-3):193-204
The effects of solar ultraviolet radiation (UVR) on the development of a periphyton community were studied in an outdoor artificial stream apparatus. Algal biomass, species composition, and bacterial cell density were measured under full sunlight and non-UVR (photosynthetically active radiation [PAR]-only) conditions. Attachment of algae was detected on days 6–9. Although the chlorophyll-a concentration under non-UVR conditions was 2–4 times that under full sunlight (PAR + UVR) throughout the experiment, neither net algal growth rate nor species composition differed significantly between the two light conditions. The relative carotenoid pigment contents of attached algae in the PAR + UVR condition were 1.1–1.3 times those in the non-UVR condition. Rates of increase of bacterial cell densities under the PAR + UVR condition were depressed by solar UVR for the first few days, although there were no apparent differences in the rates of increase between the light conditions later in the experiment. The small effect of UVR on the development of this periphyton community may be attributable to low UV flux at this study site and to the experimental conditions under which the algae were kept: a high physiological state with high nutrient conditions. Attached bacteria and algae that colonize substrata first are likely to be sensitive to solar UVR, and the negative effects of UVR are mitigated by the development of a periphyton community.  相似文献   

6.
1. Stream riffles in southern Ontario and western Quèbec were sampled for biomass (58 stations from 51 streams) and production (22 stations from 21 streams) of algae and bacteria in periphyton to test the hypothesis that bacteria in benthic biofilms compete with algae for nutrients. 2. Algal and bacterial biomass were positively correlated, as were algal and bacterial production. Bacterial production was also positively correlated to algal and bacterial biomass, but the relationship was not significant. The ratio of algal to bacterial biomass did not vary with nutrients whereas algal production tended to increase with nutrients more rapidly than bacterial production. 3. Instream nitrogen concentrations explained 38–58% of the variability in algal biomass and production. Bacterial abundance explained an additional 9–29% of the residual variance in algal production and biomass. However, the relationship between bacterial abundance and algal production and biomass, once nutrients were taken into account, was positive, in contrast to the predicted effect of competition. 4. Hence, we reject our original hypothesis that bacteria in biofilms compete with algae for nutrients and instead suggest that bacteria and algae in biofilms coexist in an association that offers space and resources to sustain production of both groups of organisms.  相似文献   

7.
Biological soil crusts are symbiotic microbial communities formed by green algae, mosses, fungi, lichens, cyanobacteria and bacteria in different proportions. Crusts contribute to soil fertility and favour water retention and infiltration. However, little is known about the bacterial community structure in soil under the crusts. Soil was sampled under a moss crust (considered the MOSS group), lichen plus moss (considered the LICHEN group) and bare soil (considered the BARE group) and the microbial communities determined using nearly full 16S rRNA gene libraries. Bacteria belonging to seven different phyla were found and the Acidobacteria and Alphaproteobacteria were the dominant in each group. The crusts affected negatively the abundance of the Burkholderiales. The phylogenetic diversity and bacterial community membership were different in the LICHEN group compared to the BARE and MOSS groups, but not species richness and community structure. The beta diversity analysis also revealed a different bacterial community structure beneath the LICHEN and MOSS crusts, suggesting species-specific influence. This is a first insight into the effect of a biological soil crust on the bacterial community structure in an organic matter rich soil of a high altitude mountain forest.  相似文献   

8.
Biological soil crusts consisting of algae, cyanobacteria, lichens, fungi, bacteria, and mosses are common in habitats where water and nutrients are limited and vascular plant cover is discontinuous. Crusts alter soil factors including water availability, nutrient content, and erosion susceptibility, and thus are likely to both directly and indirectly affect plants. To establish this link, we must first understand the crust landscape. We described the composition, abundance, and distribution of microalgae in crusts from a periodically burned, xeric Florida shrubland, with the goal of understanding the underlying variability they create for vascular plants, as well as the scale of that variability. This is the first comprehensive study of crusts in the southeastern United States, where the climate is mesic but sandy soils create xeric conditions. We found that crusts were both temporally and spatially heterogeneous in depth and species composition. For example, cyanobacteria and algae increased in abundance 10-15 years after fire and away from dominant shrubs. Chlorophyll a levels recovered rapidly from small-scale disturbance relative to intact crusts, but these disturbances added to crust patchiness. Plants less than 1 m apart can experience different crust environments that may alter plant fitness, plant interactions, and plant community composition.  相似文献   

9.
A new technique for spectral fingerprinting of major algal groups in the freshwater periphyton (i.e. cyanobacteria, green algae, and diatoms) was developed using confocal laser scanning microscopy. This technique used the differential spectral emission signatures of photosynthetic algae and allowed their spatially explicit quantification and community three‐dimensional reconstruction. Algal biovolume measurements, carried out with this technique, are superior to existing protocols involving chl and ash‐free dry mass assessments because they are nondestructive, localized, and specific at a group level. This technique can be used to generate depth profiles of the periphytic mat with various applications in aquatic ecology and biofilm analysis.  相似文献   

10.
Recent molecular data suggest that desert green algae have evolved from freshwater ancestors at least 14 times in three major classes (Chlorophyceae, Trebouxiophyceae and Charophyceae), offering a unique opportunity to study the adaptation of photosynthetic organisms to life on land in a comparative phylogenetic framework. We examined the photorecovery of phylogenetically matched desert and aquatic algae after desiccation in darkness and under illumination. Desert algae survived desiccation for at least 4 weeks when dried in darkness, and recovered high levels of photosynthetic quantum yield within 1 h of rehydration in darkness. However, when 4 weeks of desiccation was accompanied by illumination, three of six desert taxa lost their ability to recover quantum yield during rehydration in the dark. Aquatic algae, in contrast, recovered very little during dark rehydration following even just 24 h of desiccation. Re-illuminating rehydrated algae produced a nearly complete recovery of quantum yield in all desert and two of five aquatic taxa. These contrasts provide physiological evidence that desert green algae possess mechanisms for photosynthetic recovery after desiccation distinct from those in aquatic relatives, corroborating molecular evidence that they are not happenstance, short-term visitors from aquatic environments. Photosensitivity during desiccation among desert algae further suggests that they may reside in protected microsites within crusts, and species specificity of photosensitivity suggests that disturbances physically disrupting crusts could lead to shifts or losses of taxonomic diversity within these habitats.  相似文献   

11.
Many methods have been proposed to extract and quantify algal pigments. Comparative studies have found that pigment extraction efficiency varies among solvent and mechanical disruption protocols due to differential cellular resistance, thereby, leading to potential misinterpretation of pigment data. When the type or resistance of algae are unknown, a method is required that efficiently extract pigments from all taxonomic groups. The objective of this study was to develop a simple and efficient one stage periphyton pigment extraction protocol by comparing the extractability of four solvents (acetone, methanol, methanol/acetone, and methanol/acetone/N,N‐dimethylformamide), the effects of grinding, and the effects of freeze‐drying. The best overall extraction was obtained using freeze‐dried samples extracted with methanol/acetone/DMF/water (MAD). Eighty‐six percent more chlorophyll was extracted when the sample was freeze‐dried relative to fresh/frozen samples extracted with 90% acetone. Freeze‐drying greatly improved the extraction of both polar and non‐polar (lipophilic/hydrophobic) pigments while MAD increased the extractability of polar pigments and improved peak resolution of all pigments. Chemotaxonomic assessment differed between samples that were fresh/frozen or freeze‐dried before extraction. The relative abundance of cyanobacteria was greater for freeze‐dried material compared with fresh/frozen due to the improved extractability of cyanobacterial pigments. Based on the results of this study, the traditional approach of 90% acetone as a solvent is not recommended for periphyton samples containing cyanobacteria or when the composition of the mat is unknown. The combination of freeze‐drying and MAD was sufficient for the extraction of pigments from a periphyton mat containing filamentous cyanobacteria, green algae, and diatoms.  相似文献   

12.
Cultivating algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. The objective of this study was to determine values for productivity, nutrient content, and nutrient recovery using filamentous green algae grown in outdoor raceways at different loading rates of raw and anaerobically digested dairy manure effluent. Algal turf scrubber raceways (30m(2) each) were operated in central Maryland for approximately 270 days each year (roughly April 1-December 31) from 2003 to 2006. Algal biomass was harvested every 4-12 days from the raceways after daily additions of manure effluent corresponding to loading rates of 0.3 to 2.5g total N (TN) and 0.08 to 0.42g total P (TP) m(-2)d(-1). Mean algal productivity values increased from approximately 2.5g DW m(-2)d(-1) at the lowest loading rate (0.3g TN m(-2)d(-1)) to 25g DW m(-2)d(-1) at the highest loading rate (2.5g TN m(-2)d(-1)). Mean N and P contents in the dried biomass increased 1.5-2.0-fold with increasing loading rate up to maximums of 7% N and 1% P (dry weight basis). Although variable, algal N and P accounted for roughly 70-90% of input N and P at loading rates below 1g TN, 0.15g TP m(-2)d(-1). N and P recovery rates decreased to 50-80% at higher loading rates. There were no significant differences in algal productivity, algal N and P content, or N and P recovery values from raceways with carbon dioxide supplementation compared to values from raceways without added carbon dioxide. Projected annual operational costs are very high on a per animal basis ($780 per cow). However, within the context of reducing nutrient inputs in sensitive watersheds such as the Chesapeake Bay, projected operational costs of $11 per kgN are well below the costs cited for upgrading existing water treatment plants.  相似文献   

13.
1. We aimed to separate the effects of grazers on periphyton via grazing from that of nutrient recycling from their faecal pellets. 2. We set up three different experimental treatments (snails/no snails/faecal pellets) and sampled over 16 days. The ‘snail’ treatment contained a low density (snail biomass c. 14 g?2) of the gastropod grazer Theodoxus fluviatilis and the ‘faecal pellet’ treatment received the same amount of faecal pellets as were produced in the ‘snail’ treatment. Whereas the ‘faecal pellet’ treatment provided extra nutrients to periphyton from the faeces, the ‘snail’ treatment provided nutrients in the form of both faeces and in excreta. There was also direct grazing on periphyton in the ‘snail’ treatment. The ‘no snail’ was not grazed and received no nutrients in faeces or excreta. 3. We measured periphyton C, N and P content, chlorophyll‐a (chl‐a), primary production, bacterial biomass, bacterial production and bacterial respiratory activity. In the water column we measured dissolved inorganic N and soluble reactive P. 4. Snails increased the amount of dissolved inorganic N in the water. On day 16, the periphyton N : P ratio in the ‘faecal pellet’ treatment was lower, and periphyton P content was higher, than in the other two treatments. N : P ratios decreased over time in the ‘faecal pellet’ treatment. Primary and bacterial production were positively correlated in all treatments. 5. Algal chl‐a and primary production of periphyton per unit area and periphyton chl‐a : C ratios increased over the 16 day in the ‘snail’ treatment, and thus excretion of dissolved N by snails had a stronger positive effect on the periphyton community than N and P in faecal pellets. 6. Our data show that excretion and egestion can have different effects on periphyton, probably because of the higher proportion of dissolved N in excreta and the higher proportion of P recycled in faecal pellets. The relative effect of nutrients recycled in egesta or in excretions, probably depends on the form of nutrient limitation of the periphyton. Further, the different components of the periphyton matrix could react differently to the different forms of nutrient recycling. 7. We conclude that direct grazing effects are less important than nutrient effects when nutrients are limiting and grazing pressure is low. Further, the spatial separation of different grazing effects can lead to differences in periphyton production and nutrient stoichiometry. This might be an explanation for the patchiness of periphyton in nature.  相似文献   

14.
Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.  相似文献   

15.
We conducted an outdoor mesocosm experiment of factorial design consisting of three levels of nutrient supply (no nutrient addition and additions of nitrogen and phosphorus in ratios of 10:1 and 45:1) cross-classified with two levels of bluegill (Lepomis macrochirus) (presence and absence). Nutrient supply significantly affected total phosphorus (TP), total nitrogen (TN), TN: TP ratio, turbidity, Secchi depth, phytoplankton chlorophyll, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers. The presence of bluegill significantly increased TP, turbidity, diatoms, unicellular green algae, colonial blue-green algae, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers, and decreased Secchi depth, cladocerans, cyclopoid copepodids, copepod nauplii and chironomid tube densities. Nutrient supply and fish effects were not independent of each other as shown by significant nutrient × fish interaction effects for TP, Secchi depth, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers.  相似文献   

16.
荒漠地表生物土壤结皮形成与演替特征概述   总被引:11,自引:0,他引:11  
张元明  王雪芹 《生态学报》2010,30(16):4484-4492
土壤表面结皮是世界范围内干旱沙漠地区土壤表面广泛存在的自然现象,包括物理结皮和生物土壤结皮两大类型。其中,生物土壤结皮作为干旱沙漠地区特殊环境的产物,是由细菌、真菌、蓝绿藻、地衣和苔藓植物与土壤形成的有机复合体。它的形成使土壤表面在物理、化学和生物学特性上均明显不同于松散沙土,具有较强的抗风蚀功能和重要的生态效应,成为干旱沙漠地区植被演替的重要基础。随着形成生物土壤结皮的物种更替,维持结皮结构的主要胶结方式亦随之发生变化,即由胞外多糖的粘结作用逐渐转变为蓝藻和荒漠藻的藻丝体、地衣菌丝体以及苔藓植物假根的缠绕和捆绑作用,物种更替是结皮微结构和胶结方式转化的生物基础。生物土壤结皮的形成通常可以分为以下几个阶段:生物土壤结皮的早期阶段(土壤酶和土壤微生物),藻结皮阶段、地衣结皮阶段和苔藓结皮阶段。即随着土壤微生物在沙土表面的生长,随后出现丝状蓝藻和荒漠藻类植物,形成以藻类植物为主体的荒漠藻结皮;当土壤表面得到一定固定后,便开始出现地衣和苔藓植物,形成以地衣和苔藓植物为优势的生物结皮类型。其中,前一阶段的完成又为后一阶段的开始提供良好的环境条件。当环境条件适宜时,生物土壤结皮也可以不经历其中某个阶段而直接发育到更高级的阶段。  相似文献   

17.
为全面了解着生藻类在建群中群落变化的生态学特性,揭示着生藻类的建群规律,在以丝状藻类为优势藻的生态塘中,采用花岗岩和瓷砖为附着材料,设置水体底部和中部为附着位点,进行频次为10d的采样分析。结果表明,生态塘中共检出8门73属117种着生藻类,其中以硅藻、蓝藻、绿藻为优势类群。同时不同人工基质和不同空间层次条件下着生藻类的建群特征较一致,早期以单细胞硅藻如舟形藻(Navicula sp.)、脆杆藻(Fragilaria sp.)、曲壳藻(Achnanthes sp.)等为优势,后期以丝状藻类如鞘丝藻(Lyngbya sp.)、颤藻(Oscillatoria sp.)、伪鱼腥藻(Pseudanabaena sp.)等为优势;研究结果发现不同人工基质(花岗岩和瓷砖)对着生藻类的种类组成、细胞密度、生物量和藻类多样性无显著影响,花岗岩和瓷砖上附着的着生藻类具有较高的相似性;但不同的空间层次对着生藻类建群特征影响明显,水体底部具有更多的硅藻种类数,中部具有更多的绿藻,随着建群时间的发展,蓝藻比例不断增加;就生物量而言,底部的着生藻类叶绿素a显著高于水体中部,但两者的细胞密度无显著性差异;随着建群过程的发展,水体底部的着生藻类生物量达峰值所需的时间比中部更长。通过相关性分析,生态塘中着生藻类的生长主要受总磷的影响。  相似文献   

18.
Nutrient enrichment bioassays, in conjunction with sampling and analysis of surface water chemistry, were conducted in freshwater lakes (kettle ponds) of Cape Cod National Seashore (Massachusetts, USA) to ascertain the importance of nitrogen (N) and phosphorus (P) in regulating the growth of periphyton. Arrays of nutrient diffusing substrata (NDS) were suspended 0.5 m below the water surface in a total of 12 ponds in July and August 2005. Algal biomass developing on each NDS after ~3 weeks of exposure in each month was assessed by quantifying chlorophyll a + phaeophyton pigments. In both July and August, strong responses to N + P and N enrichments were observed in the majority of ponds, while P had no stimulatory effect. These responses correspond well with low atomic ratios (1–18) of dissolved inorganic nitrogen (DIN) to total phosphorus (TP) in ambient surface waters. The results suggest that conditions in the kettle ponds develop whereby nitrogen is the primary limiting nutrient to periphyton growth. While this may be a seasonal phenomenon, it has implications for nutrient management in individual ponds and within the larger watershed.  相似文献   

19.
SUMMARY 1. The response of bacterial production (measured as [3H]TdR incorporation rate) to spectral solar radiation was quantified experimentally in an oligotrophic high-mountain lake over 2 years. Bacterial responses were consistent: ultraviolet-B (UVB) was harmful, whereas ultraviolet-A (UVA) + photosynthetically active radiation (PAR) and PAR enhanced bacterial activity. Full sunlight exerted a net stimulatory effect on bacterial activity in mid-summer but a net inhibitory effect towards the end of the ice-free period.
2. Experiments were undertaken to examine whether the bacterial response pattern depended on the presence of algae and/or was modulated by the availability of a limiting inorganic nutrient (phosphorus, P). In the absence of algae, [3H]TdR incorporation rates were significantly lower than when algae were present under all light treatments, and the consistent bacterial response was lost. This suggests that the bacterial response to spectral solar radiation depends on fresh-C released from algae, which determines the net stimulatory outcome of damage and repair in mid-summer.
3. In the absence of algae, UVB radiation inhibited bacteria when they were strongly P-deficient (mean values of N : P ratio: 46.1), whereas it exerted no direct effect on bacterial activity when they were not P-limited.
4. P-enrichment of lake water markedly altered the response of bacteria to spectral solar radiation at the end of ice-free period, when bacteria were strongly P-deficient. Phosphorus enrichment suppressed the inhibitory effect of full sunlight that was observed in October, both in whole lake water (i.e. including algae) and in the absence of algae. This indicates that the bacterial P-deficiency, measured as the cellular N : P ratio, was partly responsible for the net inhibitory effect of full sunlight, implying a high bacterial vulnerability to UVB.  相似文献   

20.
微生物多样性对于生物土壤结皮在沙漠生态系统中改善局部环境以及提升生态功能具有重要作用。本研究对腾格里沙漠东南缘沙坡头地区藻结皮、藓结皮及其下层的四季样品进行了16S rDNA高通量测序, 以期阐明细菌多样性及其在生物土壤结皮演替过程中的季节变化规律。结果表明4种类型样品的细菌丰富度在夏季显著低于其他3个季节。4种类型样品中主要的细菌类群为变形菌门、放线菌门、绿弯菌门、酸杆菌门、蓝细菌门等, 其中变形菌门和放线菌门为优势类群, 夏季时变形菌门的相对多度显著高于春季、秋季、冬季, 且在结皮层中相对多度显著高于结皮下层。放线菌门的相对多度在春季、夏季显著高于秋季、冬季, 且结皮下层相对多度高于结皮层。生物土壤结皮演替过程中细菌多样性及其相对多度季节动态变化表明其对沙漠土壤局部环境的变化作出了响应, 这为深入理解生物土壤结皮在沙漠生态系统中的生态功能提供了微生物多样性数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号