首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
Phytophenols were solubilized in nonionic surfactant micelles to form antimicrobially active and thermodynamically stable microemulsions. Formulation of phytophenols in microemulsions has previously been shown to improve their antimicrobial activity in model microbiological and food systems. Carvacrol and eugenol were incorporated in micellar solutions of two nonionic surfactants (Surfynol® 485W and Surfynol® 465) by mixing at room temperature. Particle size of formed microemulsions was determined by dynamic light scattering, and structural information about the mixed micellar system was obtained by nuclear magnetic resonance spectroscopy (NMR). Uptake of carvacrol and eugenol in surfactant micelles as determined by ultrasonic velocity measurements was very rapid, e.g., below the maximum additive concentration, the phytophenols were completely solubilized in the micelles in less than 30 min. Depending on the surfactant–phytophenol combination, the self-assembled surfactant–phytophenol aggregates had mean particle diameters between 3 and 17 nm. Elucidation of the structure of aggregates by 1H NMR studies indicated that micelles had a “bracket-like” structure with phytophenols being located inside the palisade layer of the micelle in direct contact with adjacent surfactant monomers. Encapsulation of phytophenols in surfactant micelles enables the incorporation of large amounts of hydrophobic antimicrobials in aqueous phases. Formulation of antimicrobial microemulsions may thus offer a means to deliver high concentrations of phytophenols to the bacterial surfaces of foodborne pathogens to affect kill.  相似文献   

2.
Novel amphiphilic star-shaped polymers showing pH-sensitivity were synthesized by atom transfer radical polymerization. These new polymers present a core-shell structure similar to polymeric micelles, but are inherently stable to dilution and are referred to as unimolecular polymeric micelles. A four-armed multifunctional initiator was used for the sequential polymerization of hydrophobic ethyl methacrylate and tert-butyl methacrylate and hydrophilic poly(ethylene glycol)methacrylate. Polymers of molecular weight ranging from 9000 to 20,000 were obtained. Results of dynamic light scattering showed micelle size ranging from 11 to 40 nm. Unimolecular micelles were also analyzed by static light scattering in aqueous environment. Star-shaped polymers which presented the highest molar ratio of hydrophobic monomers tended to form high molecular weight aggregates in water. Hydrolysis of the tert-butyl methacrylate units permitted the introduction of ionizable methacrylic acid functions. Size distributions were bimodal at both acidic and basic pH. Since, the polymers were designed as potential delivery systems for the oral administration of hydrophobic drugs, they were titrated to evaluate the degree of ionization as a function of pH. In the stomach, the carboxylic functions are expected to be fully protonated. However, in the intestine, the micelles will be more than 40% ionized. Fluorescence studies were conducted in order to evaluate the polarity of the micellar core. Results showed an increase in polarity with pH due to the ionization of the acid functions present along the polymer chains. The pH rise was associated with an increase in the in vitro release rate of progesterone, which was used as hydrophobic drug model.  相似文献   

3.
A novel process has been developed to improve the refolding yield of denatured proteins. It uses reversed micelles to isolate denatured protein molecules from each other and thus, upon refolding, reduces the intermolecular interactions which lead to aggregation. The feasibility of this process was first demonstrated with Ribonuclease A as a model protein. In the present work, we expanded the scope of this study to better understand both the general mechanisms of protein refolding in reversed micelles and the biotechnological applicability of the process. First, we investigated the interactions between the individual components of the reversed micellar system (the protein molecule, the denaturant guanidine hydrochloride (GuHCl), and the surfactant (AOT)) during the refolding process. We then extended our studies to a more hydrophobic protein, gamma-interferon, which aggregates upon refolding in aqueous solution. However, it was also found to aggregate in our reversed micelle process during the extraction step. Since gamma-interferon is a much more hydrophobic protein than RNase, we hypothesize that interactions between hydrophobic amino acids and the surfactant layer may interfere with refolding. This hypothesis was tested by studying the refolding of chemically modified RNase. The substitution of 55% of the surface lysine residues with hydrophobic caproyl groups caused a significant decrease in the refolding yield of RNase in the reversed micellar system without affecting aqueous solution renaturation. In addition, the extraction efficiency of the enzyme from reversed micelles back into aqueous solution was severely reduced and resulted in aggregation. These experiments indicate that unfolded hydrophobic Proteinsinteract with the Surfactant molecules, which limits their ability to refold in reversed micelles.  相似文献   

4.
A carbosilane dendrimer (4a) and its silacyclopentadiene analog (4b), both functionalized with lactoses, were tested for their abilities to act as drug-delivery systems. The critical micelle concentrations of 4a and 4b were measured using the drop-volume method in water and were 1.7 and 2.9 μM, respectively, suggesting that they could act as aggregates of glycoclusters. The amounts of the hydrophobic dye Orange OT loaded onto aqueous micelles of 4a and 4b and the stabilities of the dye/micelle complexes were determined by extracting the dyes from the complexes into chloroform. The particle sizes were measured for the loaded micelles by dynamic light scattering. Transfer of the dye from the micelles to peanut agglutinin was observed by fluorescence microscopy. Given the abilities of micelles of 4a and 4b to bind and release Orange OT, these glycocluster micelles may find use as drug-delivery systems.  相似文献   

5.
5-lipoxygenase (EC 1.13.11.12) oxidizes polyunsaturated fatty acids by molecular oxygen. The enzyme acts in close contact with the cell membranes, which main components are ionic and non-ionic lipids. In order to investigate the kinetic parameters of 5-lipoxygenase reaction in vitro, extremely hydrophobic fatty acid substrate (linoleic acid) should be solubilized in the reaction mixture. We used Lubrol PX ("Sigma" Chem. Co), as a non-ionic detergent consisted of oligoethylene glycol and fatty alcohol. Linoleic acid and Lubrol PX formed mixed micelles thus solubilizing the fatty acid substrate in a buffer with appropriate pH. We have studied the sizes and shapes of mixed micelles Lubrol PX/linoleic acid (aggregates type 1) and Lubrol PX/linoleic acid/SDS (aggregates type 2; SDS was an effective activator of potato tuber 5-lipoxygenase) by means of gel-filtration and laser light scattering techniques. The parameters under investigation were molecular weights, Stocks radii and shapes of the mixed micelles. The average molecular weights and Stocks radii of the mixed micelles type 1 determined by mean of gel-filtration on Sephadex G-200 were 95,142 +/- 5184 Da and 3.45 +/- 0.11 nm, respectively. The same parameters for the mixed micelles type 2 were 73,694 +/- 893 Da and 3.02 +/- 0.02 nm, respectively. The strong similarity in physicochemical parameters for both types of mixed micelles indicated that SDS did not influence the size and shape of mixed micelles of Lubrol PX and linoleic acid. The activatory action of SDS on potato tuber lipoxygenase may be a result of electrostatic effect or direct participation of SDS in enzymatic catalysis. The laser light scattering technique allowed to determine two main fraction of particles in type 1 system with hydrodynamic diameters 2.6 and 5.7 nm and relative contribution to light scattering 13 and 87%, respectively. The particles with d = 5.7 nm were interpreted as the mixed micelles. The particles with d = 2.6 nm were interpreted as isolated molecules of Lubrol PX, linoleic acid and (or) their premicellar aggregates. The data obtained are to be used in creation of reliable physical and mathematical models of 5-lipoxygenase.  相似文献   

6.
Micelles are self‐assembled aggregates that arrange themselves into spheres in aqueous media. When the surfactant concentration reaches the critical micelle concentration, extensive aggregation of the surfactant monomers occurs to form micelles. A micelle has both a hydrophilic and a hydrophobic part. This allows them to form a spherical shape and for their glycolipid and phospholipid components to form lipid bilayers. The importance of micelles is increasing because of their wide analytical applications. Recently, colloidal carrier systems have received much attention in the field of analytical chemistry, especially in luminescence enhancement applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Lee H  Zeng F  Dunne M  Allen C 《Biomacromolecules》2005,6(6):3119-3128
Six amphiphilic diblock copolymers based on methoxy poly(ethylene glycol) (MePEG) and poly(delta-valerolactone) (PVL) with varying hydrophilic and hydrophobic block lengths were synthesized via a metal-free cationic polymerization method. MePEG-b-PVL copolymers were synthesized using MePEG with Mn = 2000 or Mn = 5000 as the macroinitiator. 1H NMR and GPC analyses confirmed the synthesis of diblock copolymers with relatively narrow molecular weight distributions (Mn/Mw = 1.05-1.14). DSC analysis revealed that the melting temperatures (Tm) of the copolymers (47-58 degrees C) approach the Tm of MePEG as the PVL content is decreased. MePEG-b-PVL copolymer aggregates loaded with the hydrophobic anti-cancer drug paclitaxel were found to have effective mean diameters ranging from 31 to 970 nm depending on the composition of the copolymers. A MePEG-b-PVL copolymer of a specific composition was found to form drug-loaded micelles of 31 nm in diameter with a narrow size distribution and improve the apparent aqueous solubility of paclitaxel by more than 9000-fold. The biological activity of paclitaxel formulated in the MePEG-b-PVL micelles was confirmed in human MCF-7 breast and A2780 ovarian cancer cells. Furthermore, the biocompatibility of the copolymers was established in CHO-K1 fibroblast cells using a cell viability assay. The in vitro hydrolytic and enzymatic degradation of the micelles was also evaluated over a period of one month. The present study indicates that the MePEG-b-PVL copolymers are suitable biomaterials for hydrophobic drug formulation and delivery.  相似文献   

8.
Cao W  Zhou J  Mann A  Wang Y  Zhu L 《Biomacromolecules》2011,12(7):2697-2707
A folate-functionalized degradable amphiphilic dendrimer-like star polymer (FA-DLSP) with a well-defined poly(L-lactide) (PLLA) star polymer core and six hydrophilic polyester dendrons based on 2,2-bis(hydroxymethyl) propionic acid was successfully synthesized to be used as a nanoscale carrier for cancer cell-targeted drug delivery. This FA-DLSP hybrid formed unimolecular micelles in the aqueous solution with a mean particle size of ca. 15 nm as determined by dynamic light scattering and transmission electron microscopy. To study the feasibility of FA-DLSP micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, doxorubicin (DOX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 4 wt %. The DOX-loaded FA-DLSP micelles demonstrated a sustained release of DOX due to the hydrophobic interaction between the polymer core and the drug molecules. The hydrolytic degradation in vitro was monitored by weight loss and proton nuclear magnetic resonance spectroscopy to gain insight into the degradation mechanism of the FA-DLSP micelles. It was found that the degradation was pH-dependent and started from the hydrophilic shell gradually to the hydrophobic core. Flow cytometry and confocal microscope studies revealed that the cellular binding of the FA-DLSP hybrid against human KB cells with overexpressed folate-receptors was about twice that of the neat DLSP (without FA). The in vitro cellular cytotoxicity indicated that the FA-DLSP micelles (without DOX) had good biocompatibility with KB cells, whereas DOX-loaded micelles exhibited a similar degree of cytotoxicity against KB cells as that of free DOX. These results clearly showed that the FA-DLSP unimolecular micelles could be a promising nanosize anticancer drug carrier with excellent targeting property.  相似文献   

9.
Multinuclear (1H and 31P) nuclear magnetic resonance (NMR) spectroscopy and quasi-elastic light scattering have been used to characterize molecular aggregates formed in dilute sodium taurocholate--egg lecithin solutions. When mixed micelles (1.25 g/dL) are diluted with 150 mM aqueous sodium chloride, light-scattering measurements suggest a transformation from mixed micelles to unilamellar vesicle species. Decreased 1H NMR line widths for bile salt resonances are consistent with predominance of a monomer form. The concurrent appearance of a second phospholipid choline methyl resonance indicates two types of phospholipid environment in slow chemical exchange: this behavior is consistent with small unilamellar vesicles. The appearance of bilayer vesicles in dilute model bile solutions is confirmed by addition of a lanthanide shift reagent (Pr3+), which splits the 1H or 31P head-group peak into two components with distinct chemical shift sensitivities. These mixed micelle and vesicle aggregates are also distinguished by their susceptibility to the lipolytic enzyme phospholipase A2 from cobra venom.  相似文献   

10.
Multichain aggregates together with individual macromolecules were detected by light scattering in dilute aqueous solutions of chitosan and of its hydrophobic derivatives bearing 4 mol % of n-dodecyl side groups. It was demonstrated that the size of aggregates and their aggregation numbers increase at the introduction of hydrophobic side groups into polymer chains. The key result concerns the effect of the chain length of individual macromolecules on the aggregation behavior. It was shown that for both unmodified and hydrophobically modified (HM) chitosan, the size of aggregates is independent of the length of single chains, which may result from the electrostatic nature of the stabilization of aggregates. At the same time, the number of macromolecules in one aggregate increases significantly with decreasing length of single chains to provide a sufficient number of associating groups to stabilize the aggregate. The analysis of the light scattering data together with TEM results suggests that the aggregates of chitosan and HM chitosan represent spherical hydrogel particles with denser core and looser shell covered with dangling chains.  相似文献   

11.
Summary The catalytic properties of mushroom polyphenoloxidase could be substantially altered by entrapment into hexane- and toluene-based microemulsions stabilized with isopropanol. The fast irreversible inactivation and drastic substrate inhibition of the enzyme were significantly reduced in detergentless microemulsions in comparison to conventional aqueous media. Similar changes in the catalytic behavior of polyphenoloxidase were observed in the normal ternary solutions of hexane-(toluene)-isopropanol-water, and in the H-bonded aggregates of isopropanol and water in toluene, but not in hexane.  相似文献   

12.
Amphiphilic block copolymers like polyethyleneglycol-block-polylactic acid (PEG-b-PLA) can self-assemble into micelles above their critical micellar concentration forming hydrophobic cores surrounded by hydrophilic shells in aqueous environments. The core of these micelles can be utilized to load hydrophobic, poorly water soluble drugs like docetaxel (DTX) and everolimus (EVR). Systematic characterization of the micelle structure and drug loading capabilities are important before in vitro and in vivo studies can be conducted. The goal of the protocol described herein is to provide the necessary characterization steps to achieve standardized micellar products. DTX and EVR have intrinsic solubilities of 1.9 and 9.6 µg/ml respectively Preparation of these micelles can be achieved through solvent casting which increases the aqueous solubility of DTX and EVR to 1.86 and 1.85 mg/ml, respectively. Drug stability in micelles evaluated at room temperature over 48 hr indicates that 97% or more of the drugs are retained in solution. Micelle size was assessed using dynamic light scattering and indicated that the size of these micelles was below 50 nm and depended on the molecular weight of the polymer. Drug release from the micelles was assessed using dialysis under sink conditions at pH 7.4 at 37 oC over 48 hr. Curve fitting results indicate that drug release is driven by a first order process indicating that it is diffusion driven.  相似文献   

13.
The association behavior of hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC) and its interaction with the anionic surfactant sodium dodecyl sulfate (SDS) has been studied in the dilute concentration regime. Steady-state fluorescence probe techniques have been utilized to obtain microstructural information of the system properties and combined with macroscopic bulk information from equilibrium dialysis experiments in order to determine binding isotherms of SDS to HM-EHEC. HM-EHEC was found to self-associate and form polymeric micelles in semi-dilute aqueous solutions. c* for the self-association process was determined to be approximately 0.4%. The microviscosity of the polymeric micelles is much higher, and the micropolarity slightly higher, than that of ordinary SDS micelles. The onset of interaction between HM-EHEC and SDS was evidenced by a simultaneous strong increase in microviscosity and decrease in micropolarity upon successive addition of SDS. There is a minor, noncooperative SDS binding to the HM-EHEC starting from low concentrations of SDS (<5 mM) followed by a highly cooperative binding region at SDS concentrations ≥5 mM. The polymer–surfactant aggregates are rigid and hydrophobic with a maximum in microviscosity in the noncooperative binding region at a very low degree of SDS-adsorption.  相似文献   

14.
Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ10). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG.The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS.We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ10 increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly – mainly in the low and medium range water dilutions. When added to the micellar system, CoQ10 forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ10 destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases.Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ10; as a result CoQ10 crystallization is retarded.  相似文献   

15.
Vesicles were identified in aqueous solution of pure sodium bis(2-ethylhexyl) phosphate, a short branched chain surfactant. Superficial tension measurements show that the vesicles appear above a molality of 0.02 (0.69 %w). These aggregates are equilibrium structures. The "packing parameter' theory established by Israelachvili et al. allows the prediction of the occurrence of such vesicles. If an organic solvent, such as xylene or ethylhexanoate, is added to the binary system, a different type of aggregate appears, the size of which is determined by several methods including electron microscopy and light scattering. Interfacial tension measurements show that these aggregates would be expected to form above a molality of 0.02. According to our experimental results, the microstructure of these aggregates can be described as micelles and/or vesicles, swollen or not.  相似文献   

16.
M A Long  E W Kaler    S P Lee 《Biophysical journal》1994,67(4):1733-1742
Small-angle neutron scattering (SANS) and dynamic light scattering (QLS) are used to characterize the aggregates found upon dilution of mixed lecithin-bile salt micelles. Molar ratios of lecithin (L) to taurocholate (TC) studied varied from 0.1 to 1, and one series contained cholesterol (Ch). Mixed aggregates of L and taurodeoxycholate (TDC) at ratios of 0.4 and 1 were also examined. In all cases the micelles are cylindrical or globular and elongate upon dilution. The radius of the mixed micelles varies only slightly with the overall composition of lecithin and bile salt which indicates that the composition of the cylindrical micelle body is nearly constant. The transition from micelles to vesicles is a smooth transformation involving a region where micelles and vesicles coexist. SANS measurements are more sensitive to the presence of two aggregate populations than QLS. Beyond the coexistence region the vesicle size and degree of polydispersity decrease with dilution. Incorporation of a small amount of cholesterol in the lipid mixture does not affect the sequence of observed aggregate structures.  相似文献   

17.
Adrenocorticotropin (ACTH) and α-melanocyte stimulating hormone (α-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of α-MSH are the same initial sequence of ACTH and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1–21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in α-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1–24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in α-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems.  相似文献   

18.
Oleosins are amphipathic proteins associated with oil bodies in seeds. We purified the major 16 500 peanut oleosin by preparative SDS–PAGE. Autoradiography after SDS–PAGE separation of the iodinated oleosin revealed covalently bound oligomers with Mr of 21 000, 33 000, 44 000 and 51 000. The strong capacity of these oligomers to form aggregates and to be incorporated into large-sized detergent micelles was demonstrated by gel permeation and isoelectric focusing. A 50% ethanol concentration was necessary to elute the 16 500 oleosin from octyl groups in hydrophobic interaction chromatography showing its natural tendency to interact with lipid acyl chains. This oligomerization behavior in aqueous solution is an indirect reflection of the interactions that occur in the oil body.  相似文献   

19.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

20.
Poly(ethylene oxide)-block-poly(styrene oxide) (PEO-b-PSO) and PEO-b-poly(butylene oxide) (PEO-b-PBO) of different chain lengths were synthesized and characterized for their self-assembling properties in water by dynamic/static light scattering, spectrofluorimetry, and transmission electron microscopy. The resulting polymeric micelles were evaluated for their ability to solubilize and protect the anticancer drug docetaxel (DCTX) from degradation. The drug release kinetics as well as the cytotoxicity of the loaded micelles were assessed in vitro. All polymers formed micelles with a highly viscous core at low critical association concentrations (<10 mg/L). Micelle morphology depended on the nature of the hydrophobic block, with PBO- and PSO-based micelles yielding monodisperse spherical and cylindrical nanosized aggregates, respectively. The maximum solubilization capacity for DCTX ranged from 0.7 to 4.2% and was the highest for PSO micelles exhibiting the longest hydrophobic segment. Despite their high affinity for DCTX, PEO-b-PSO micelles were not able to efficiently protect DCTX against hydrolysis under accelerated stability testing conditions. Only PEO-b-PBO bearing 24 BO units afforded significant protection against degradation. In vitro, DCTX was released slower from the latter micelles, but all formulations possessed a similar cytotoxic effect against PC-3 prostate cancer cells. These data suggest that PEO-b-P(SO/BO) micelles could be used as alternatives to conventional surfactants for the solubilization of taxanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号