首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.  相似文献   

2.
A frequent feature of microtubule organisation in living systems is that it can be triggered by a variety of biochemical or physical factors. Under appropriate conditions, in vitro microtubule preparations self-organise by a reaction-diffusion process in which self-organisation depends upon, and can be triggered by, weak external physical factors such as gravity. Here, we show that self-organisation is also strongly dependent upon the presence of a high magnetic field, for a brief critical period early in the process, and before any self-organised pattern is visible. These results provide evidence that external physical factors trigger self-organisation by way of an orientational bias that breaks the symmetry of the reaction-diffusion process. As microtubule organisation is central to many cell functions, this behaviour provides a mechanism by which strong magnetic fields can intervene in biological processes.  相似文献   

3.
The mechanisms by which biological processes are effected by gravity are not understood. Theoreticians have proposed that gravitational effects could come about from the bifurcation properties of certain types of non-linear chemical reactions that self-organise by reaction and diffusion. We have found that in-vitro preparations of microtubules, an important element of the cellular skeleton, show this type of behaviour. They self-organise by reaction and diffusion and the morphology that arises depend upon the presence of gravity, at a critical moment or bifurcation time, early in the process. At a molecular level this behaviour results from an interaction of gravity with macroscopic concentration and density fluctuations created by microtubule contraction and elongation. Numerical simulations predict macroscopic self-organisation in qualitative agreement with experiment. It is plausible that microtubule organisation by these processes occurs in-vivo.  相似文献   

4.
Under appropriate conditions, in vitro microtubule preparations self-organise over macroscopic distances by a process of reaction and diffusion. To investigate whether such self-organisation can also occur in objects as small as a cell or an embryo we carried out experiments in miniature containers of cellular dimension. When assembled under self-organising conditions in wells of 120–500 μm, microtubules developed organised structures. Self-organisation is strongly affected by shape, being highly favoured by elongated forms. In wells of more complex shape, geometrical factors may either oppose or strengthen one another and so inhibit or reinforce self-organisation. Microtubules were also assembled within phospholipid vesicles of 2–5 μm diameter. Under self-organising conditions, we observed large shape changes from spheroids to long tubes (50–100 μm) and intertwined coils. We conclude that self-organisation of microtubules by reaction–diffusion processes can occur in containers of cellular dimensions and is capable of strongly deforming the cellular membrane.  相似文献   

5.
Liu M  Gao H  Shang P  Zhou X  Ashforth E  Zhuo Y  Chen D  Ren B  Liu Z  Zhang L 《PloS one》2011,6(10):e24697

Background

Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites.

Methodology/Principal Findings

S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity.

Conclusion/Significance

We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.  相似文献   

6.
This article addresses the physical chemical processes underlying biological self-organisation by which a homogenous solution of reacting chemicals spontaneously self-organises. Theoreticians have predicted that self-organisation can arise from a coupling of reactive processes with molecular diffusion. In addition, the presence of an external field, such as gravity, at a critical moment early in the process may determine the morphology that subsequently develops. The formation, in-vitro, of microtubules, a constituent of the cellular skeleton, shows this type of behaviour. The preparations spontaneously self-organise by reaction-diffusion and the morphology that develops depends upon the presence of gravity at a critical bifurcation time early in the process. Here, we present numerical simulations of a population of microtubules that reproduce this behaviour. Microtubules can grow from one end whilst shrinking from the other. The shrinking end leaves behind a chemical trail of high tubulin concentration. Neighbouring microtubules preferentially grow into these regions, whilst avoiding regions of low tubulin concentration. The chemical trails produced by individual microtubules thus activate and inhibit the formation of neighbouring microtubules and this progressively leads to self-organisation. Gravity acts by way of its directional interaction with the macroscopic density fluctuations present in the solution arising from microtubule disassembly.  相似文献   

7.
This article deals with the physical chemical processes underlying biological self-organization by which an initially homogenous solution of reacting chemicals spontaneously self-organizes so as to give rise to a preparation of macroscopic order and form. Theoreticians have predicted that self-organization can arise from a coupling of reactive processes with molecular diffusion. In addition, the presence or absence of an external field, such as gravity, at a critical moment early in the self-organizing process may determine the morphology that subsequently develops. We have found that the formation in vitro of microtubules, a major element of the cellular skeleton, show this type of behaviour. The microtubule preparations spontaneously self-organise by way of reaction and diffusion, and the morphology of the state that forms depends on the presence of gravity at a critical moment early in the process. We have developed a numerical reaction-diffusion scheme, based on the chemical dynamics of a population of microtubules, which simulates the experimental self-organisation. In this article we outline the main features of these simulations and discuss the manner by which a permanent dialogue with experiment has helped develop a microscopic understanding of the collective behaviour.  相似文献   

8.
The use of a magnetic field gradient levitation apparatus as a tool for investigating gravisensing mechanisms in biological systems and as a low gravity simulator for biological systems is described. The basic principles are described. Differences between its application to pure materials and the heterogeneous materials of biological materials are emphasized.  相似文献   

9.
Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.  相似文献   

10.
Rösner H  Wassermann T  Möller W  Hanke W 《Protoplasma》2006,229(2-4):225-234
Summary. Human SH-SY5Y neuroblastoma cells were used to study the effects of altered gravity on the actin and microtubule cytoskeleton dynamics. A cholinergic stimulation of the cells during a 6 min period of changing gravity (3 parabolas) resulted in an enhanced actin-driven protrusion of evoked lamellipodia. Likewise, the spontaneous protrusive activity of nonactivated cells was promoted during exposure to changing gravity (6 up to 31 parabolas). Ground-based experiments revealed a similar enhancement of the spontaneous and evoked lamellar protrusive activity when the cells were kept at 2 g hypergravity for at least 6 min. This gravity response was independent of the direction of the acceleration vector in respect to the cells. Exposure of the cells to “simulated weightlessness” (clinorotation) had no obvious influence on this type of lamellar actin cytoskeleton dynamics. A 20 min exposure of the cells to simulated weightlessness or to changing gravity (6 to 31 parabolas) – but not to 2 g (hypergravity, centrifugation) – resulted in an altered arrangement of microtubules indicated by bending, turning, and loop formation. A similar altered arrangement was shown by microtubules which had polymerized into lamellipodia after release from a taxol block at simulated weightlessness (clinorotation) or during changing gravity (5 parabolas). Our data suggest that in human SH-SY5Y neuroblastoma cells, microgravity affects the dynamics and spatial arrangement of microtubules but has no influence on the Rac-controlled lamellar actin cytoskeleton dynamics and cell spreading. The latter, however, seems to be promoted at hypergravity. Correspondence and reprints: Cell and Developmental Neurobiology, Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Federal Republic of Germany.  相似文献   

11.
A variety of experiments suggest that space flight is associated with an increase in oxidative stress in organism. To explore the effects of oxidative stress on neuronal cells during microgravity, we used rat pheochromocytoma (PC12) cells as a neuronal cell model, cultured in a clinostat, which could simulate microgravity, to investigate the effects of reactive nitrogen species on protein nitration in PC12 cells during clinorotation. The effects of melatonin and quercetin on protein nitration in PC12 cells were also assayed to evaluate the possible protective role of melatonin or quercetin as an antioxidant. The results of immunological staining showed that after the 3 days' clinorotation the protein expressions of neuronal nitric oxide synthase and inducible nitric oxide synthesis were up-regulated. Our data also reflected that the concentrations of nitric oxide and nitrotyrosine were significantly increased after clinorotation, and they were reduced markedly in cells that were treated with 50 micromol/L melatonin or 0.5 micromol/L quercetin during simulated microgravity, when compared to those of control cells. These results suggest that clinorotation-induced weightlessness increases oxidative stress responses in PC12 cells, and melatonin or quercetin was shown to protect PC12 cells from oxidative damage during simulated weightlessness.  相似文献   

12.
A key requirement to enhance our understanding of the response of biological organisms to different levels of gravity is the availability of experimental systems that can simulate microgravity and hypergravity in ground-based laboratories. This paper compares the results obtained from analysing gene expression profiles of Drosophila in space versus those obtained in a random position machine (RPM) and by centrifugation. The correlation found validates the use of the RPM simulation technique to establish the effects of real microgravity on biological systems. This work is being extended to investigate Drosophila development in another gravity modifying instrument, the levitation magnet.  相似文献   

13.
Gravitropism describes curvature of plants in response to gravity or differential acceleration and clinorotation is commonly used to compensate unilateral effect of gravity. We report on experiments that examine the persistence of the gravity signal and separate mechanostimulation from gravistimulation. Flax roots were reoriented (placed horizontally for 5, 10 or 15 min) and clinorotated at a rate of 0.5 to 5 rpm either vertically (parallel to the gravity vector and root axis) or horizontally (perpendicular to the gravity vector and parallel to the root axis). Image sequences showed that horizontal clinorotation did not affect root growth rate (0.81 ± 0.03 mm h−1) but vertical clinorotation reduced root growth by about 7%. The angular velocity (speed of clinorotation) did not affect growth for either direction. However, maximal curvature for vertical clinorotation decreased with increasing rate of rotation and produced straight roots at 5 rpm. In contrast, horizontal clinorotation increased curvature with increasing angular velocity. The point of maximal curvature was used to determine the longevity (memory) of the gravity signal, which lasted about 120 min. The data indicate that mechanostimulation modifies the magnitude of the graviresponse but does not affect memory persistence.Key words: mechanostimulation, memory, clinorotation speed and direction, signal persistence, signal saturation  相似文献   

14.
Summary Results from experiments using protoplasts in space, performed on the Biokosmos 9 satellite in 1989 and on the Space Shuttle on the IML-1-mission in 1992 and S/MM-03 in 1996, are presented. This paper focuses on the observation that the regeneration capacity of protoplasts is lower under micro-g conditions than under 1 g conditions. These aspects have been difficult to interpret and raise new questions about the mechanisms behind the observed effects. In an effort to try to find a key element to the poor regeneration capacity, ground-based studies were initiated focusing on the effect of the variable organization and quantity of corticular microtubules (CMTs) as a consequence of short periods of real and simulated weightlessness. The new results demonstrated the capacity of protoplasts to enter division, confirming the findings in space that this was affected by gravity. The percentage of dividing cells significantly decreased as a result of exposure to simulated weightlessness on a 2-D clinostat. Similar observations were made when comparing the wall components, which confirmed that the reconstitution of the cell wall was retarded under both space conditions and simulated weightlessness. The peroxidase activity in protoplasts exposed to microgravity was slightly decreased in both 0 g and 1 g flight samples compared with the ground controls, whereas activity in the protoplasts exposed to simulated weightlessness was similar to activity in the 1 g control. The observation that protoplasts had randomized and more sparse corticular microtubules when exposed to various forms of simulated and real weightlessness on a free-fall machine on the ground could indicate that the low division capacity in 0 g protoplasts was correlated with an abnormal CMT array in these protoplasts. This study has increased our knowledge of the more basic biochemical and cell biological aspects of g effects. This is an important link in preparation for the new space era, when it will be possible to follow the growth of single cells and tissue cultures for generations under microgravity conditions on the new International Space Station, which will be functional on a permanent basis from the year 2003.  相似文献   

15.
Previous studies examining metabolic characteristics of bacterial cultures have mostly suggested that reduced gravity is advantageous for microbial growth. As a consequence, the question of whether space flight would similarly enhance secondary metabolite production was raised. Results from three prior space shuttle experiments indicated that antibiotic production was stimulated in space for two different microbial systems, albeit under suboptimal growth conditions. The goal of this latest experiment was to determine whether the enhanced productivity would also occur with better growth conditions and over longer durations of weightlessness. Microbial antibiotic production was examined onboard the International Space Station during the 72-day 8A increment. Findings of increased productivity of actinomycin D by Streptomyces plicatus in space corroborated with previous findings for the early sample points (days 8 and 12); however, the flight production levels were lower than the matched ground control samples for the remainder of the mission. The overall goal of this research program is to elucidate the specific mechanisms responsible for the initial stimulation of productivity in space and translate this knowledge into methods for improving efficiency of commercial production facilities on Earth.  相似文献   

16.
ABSTRACT: In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.  相似文献   

17.
Gravitropic responses of dark grown oat coleoptiles were measured in weightlessness and under clinorotation on earth. The tests in microgravity were conducted in Spacelab during the IML-1 mission and those on clinostats were conducted in laboratories on earth. The same apparatus was used for both kinds of tests. In both cases autotropism and gravitropic responsiveness were determined. This allowed a quantitative comparison between the plants' responses after receiving the same tropistic stimulations either in weightlessness or on clinostats.
Autotropism was observed with oat coleoptiles responding in weightlessness but it did not occur on clinostats. Gravitropic responsiveness was measured as the ratio between the incremental bending response (degrees curvature) and the corresponding incremental g-dose (stimulus intensity times duration for which it was applied). Plants were tested at either of two stages of coleoptile development (i.e. different coleoptile lengths). From a total of six different kinds of critical comparisons that could be made from our tests that provided data for clinorotated vs weightless plants, three showed no significant difference between responses in simulated vs authentic weightlessness. Three other comparisons showed highly significant differences. Therefore, the validity of clinorotation as a general substitute for space flight was not supported by these results.  相似文献   

18.
地面模拟失重实验方法概况   总被引:2,自引:0,他引:2  
虽然载人航天事业已得到突破性的进展,但航天员对失重的适应和返回地球后的再适应,无论在理论上还是实践中都是尚未攻克的技术难题。航天失重环境下航天飞行综合征的发生机理及对抗措施,仍是航天医学的重要课题。在地面上无法创造长期的失重环境,但根据失重对机体产生的生理效应可实现地面模拟失重实验。本文概述了地面模拟失重的人体实验、动物实验概况,为更好开展地面模拟失重条件下相关研究提供参考。  相似文献   

19.
Upside-down swimming catfish Synodontis nigriventris can keep upside-down swimming posture stably under pseudo-microgravity generated by clinostat. When the vestibular organ is unilaterally ablated, the operated S. nigriventris shows disturbed swimming postures under the clinorotation condition. However, about 1 month after the operation, unilateral vestibular organ-ablated S. nigriventris shows stable upside-down swimming posture under the condition (vestibular compensation). In contrast, a closely related upside-up swimming catfish Synodontis multipunctatus belonging to same Synodontis family can not keep stable swimming postures under the clinorotation conditions. In this study, we examined the effect of continuous clinorotation on vestibular compensation in intact and unilateral vestibular organ-ablated Synodontis nigriventris and Synodontis multipunctatus. After the exposure to continuous clinorotation, the postures of the catfish were observed under microgravity provided by parabolic flights of an aircraft. Unilateral vestibular organ-ablated S. nigriventris which had been exposed to continuous clinorotation showed stable swimming postures and did not show dorsal light reaction (DLR) under microgravity. This postural control pattern of the operated catfish was similar to that of intact catfish. Intact and unilateral vestibular organ-ablated S. multipunctatus showed DLR during microgravity. Our results confirmed that S. nigriventris has a novel balance sensation which is not affected by microgravity. DLR seems not to play an important role in postural control. It remains unclear that the continuous clinorotation effects on vestibular compensation because we could not keep used unilateral vestibular organ-ablated fish alive under continuous clinorotation for uninterrupted 25 days. This study suggests that space flight experiments are required to explore whether gravity information is essential for vestibular compensation.  相似文献   

20.
A number of experiments, conducted under microgravity conditions, i.e. in space shuttle biolaboratories or in ground based systems simulating the conditions occurring in microgravity, show that in hypogravity, in vitro human lymphocyte activation is severely impaired. However, very early stimulation steps of T lymphocytes are not compromised, since CD69 receptor, the earliest membrane activation marker, is expressed by T cells at a level comparable to that observed on 1 g activated lymphocytes. Since CD69 engagement, together with submitogenic doses of phorbol esters, transduces an activation signal to T lymphocytes, we undertook a comparative study on the stimulation mediated through this receptor on human CD3+ cells cultured under conditions similar to those which occur during exposure to microgravity, i.e. in clinorotation, or at 1 g. During the early hours of activation, increased levels of intracellular calcium and increased mitochondrial membrane potential were detectable in clinorotating as well as in 1 g cells. However, after 48 hours clinorotation, interleukin 2 production by T lymphocytes was significantly reduced and cell proliferation was greatly decreased. By means of a differential proteomics approach on T cells activated in clinorotation or at 1 g for 48 hours, we were able to detect statistically significant quantitative protein alterations. Seven proteins with modified expression values were identified; they are involved in nucleic acids processing, proteasome regulation and cytoskeleton structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号