首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Oecologica》2002,23(2):109-114
Hedysarum laeve, a rhizomatous clonal semi-shrub, commonly dominates the inland dunes in semiarid areas of northern China. This species propagates vegetatively by extension of horizontal woody rhizomes resulting in programmed reiteration of apical and/or axillary meristems. In this study, the plants were experimentally manipulated by cutting rhizome connections and 14C-labelling techniques were employed to investigate the ecological significance of rhizome connections within the H. laeve clone. Severance of rhizome connections had a great effect on the performance of young ramets within a clone. Young ramets severed from their parent ramets experienced a significant reduction both in ramet growth and vegetative propagation, as compared with the intact young ramets. Within clonal fragments, consisting of three interconnected ramets including a mother ramet, a daughter ramet and a granddaughter ramet, 14C-photosynthates from the fed leaves of mother ramets were acropetally transported to all clonal component parts. The 14C-photosynthate translocation within the clonal fragment provides evidence that the young ramets were supported by their parent ramets. Our results suggest that the woody rhizome connections among the interconnected ramets are ecologically and strategically important for the species to grow in the sand dune habitat.  相似文献   

2.
We investigated the effect of culture temperature on feed intake, absorption, organismal growth, and tissue production of Lytechinus variegatus by culturing individuals at three different temperatures representing the normal range of temperature exposure in wild populations in the northern Gulf of Mexico. Large L. variegatus (ca. 42 + 0.6 mm diameter, 36 + 1.3 g wet weight, n = 97) were collected at St. Joseph Bay, Florida, in October 2001. Eight sea urchins were held individually in 1-L containers within an 80-L aquarium with recirculated synthetic seawater at 32-ppt salinity. Three aquaria with the containers were each placed in three incubators at temperatures of 16, 22, or 28 °C for 8 weeks. Sea urchins held at 22 °C had the highest rate of feed intake. Feed intake in individuals held at 16 °C decreased significantly during the first 2 weeks of exposure and then increased to values not significantly different from those held at 28 °C by week 6. The dry matter absorption efficiency of individuals held at 28 °C was significantly higher than those held at 16 °C or 22 °C. The percentage of organic matter in the feces did not vary significantly with temperature. Individuals increased significantly in diameter, wet weight, and gonad weight at all temperatures. The wet weights of individuals held at 22 °C were significantly higher than those held at 28 °C or 16 °C, which did not differ significantly. The gut weight varied inversely with temperature. The wet weight of gonads of individuals held at 22 °C was significantly higher than those held at 28 °C, but neither differed significantly from those held at 16 °C. Production efficiencies, both organismal and gonadal, were inversely proportional to temperature, indicating that the overall metabolic cost of production increased with increasing temperatures. Organism production efficiencies were lower and gonad production efficiencies were higher than those found in small sea urchins, emphasizing that patterns of nutrient allocation vary between small and large sea urchins. Physiological processes associated with feed intake, absorption, and nutrient allocations vary with temperature, but allow the sea urchins to maintain growth and gonad production at a variety of temperatures. These data suggest that temperatures near the upper limits do not promote efficient use of resources, an important consideration for future commercial culture. Since gonad (roe) production is the ultimate goal of many aquaculture operations, gonad production efficiencies will provide a valuable tool for evaluating the efficacy of various feeds and feeding conditions on gonad production.  相似文献   

3.
The timing of the transition from seed, seedlings and development into flowering is paramount importance in annual-type Zostera marina, because flowering is the first step of sexual reproduction. A majority of plants use environmental cues to regulate the transition to their developmental stages because plants must flower synchronously for successful outcrossing and must complete their sexual reproduction under favorable external conditions. The morphological characteristics (seeds and lateral shoot production, branch number, and inflorescence length) of reproductive shoots of Z. marina L. were examined in outdoor mesocosms to better understand the reproductive strategies of annual populations. Seeds in the germination experiment were divided into two groups: those exposed to cold (7 °C; vernalized group) and those left untreated (25-21 °C; non-vernalized group). All 600 seeds (300 from each group) were cultured for 2 months at 7, 10, 15, 20, and 25 °C in an indoor incubator. In the vernalized group, the germination rates were almost significantly higher than in the non-vernalized group. However, germination rates were not significantly affected by germination temperature. In outdoor mesocosms, production of vegetative shoots was observed in plants germinated at 15 and 20 °C in the vernalized group and at 10, 15 and 20 °C in the non-vernalized group. The highest number of vegetative shoots produced (35) was observed in plants germinated at 20 °C in the vernalized group, whereas seeds of either group failed to produce vegetative shoots when germinated at a low temperature (7 °C).In the flowering phase, the number of branches per shoot in the vernalized group was significantly higher than in the non-vernalized group. The total number of spadices on the 1st branches of plants in the vernalized group (germination at 20 °C) was significantly lower than that in the non-vernalized group at the same germination temperature. The total number of spadices per reproductive shoot in the vernalized group (germination at 10 °C) was also higher than in the non-vernalized group. Thus, both low temperature (vernalization) and seed germination temperature have implications for the sexual and asexual propagation of annual Z. marina populations.  相似文献   

4.
The ability of hatchling turtles to detect environmental temperature differences and to effectively select preferred temperature is a function that critically impacts survival. In some turtle species, temperature preference may be influenced by embryonic and post-hatching conditions, such as egg-incubation and acclimation temperature. We tested for effects of embryonic incubation temperature (27.5 °C, 30 °C) and acclimation temperature (20 °C, 25 °C) on the selected temperature and movement patterns of 32 Chrysemys picta bellii (Reptilia: Emydidae) hatchlings in an aquatic thermal gradient of 14-34 °C and in single-temperature (20 °C, 25 °C) control tests. Among 10-11 month old hatchlings, acclimation temperature and egg-incubation temperature influenced temperature selection and movement patterns. Acclimation temperature affected activity and movement: in thermal gradient and single-temperature control tests, 25 °C-acclimated turtles relocated between chambers significantly more frequently than individuals acclimated to 20 °C. Acclimation temperature also affected temperature selection: 20 °C-acclimated turtles selected a specific temperature during gradient tests, but 25 °C-acclimated turtles did not. Among 20 °C-acclimated turtles, egg-incubation temperature was inversely related to selected temperature: hatchling turtles incubated at 27.5 °C selected the warmest temperature available (34 °C); individuals incubated at 30 °C selected the coldest temperature (14 °C). These results suggest that interactions of environmental conditions may influence post-hatching thermoregulatory behavior in C. picta bellii, a factor that ultimately affects fitness.  相似文献   

5.
We compared the growth responses of the floating-leaved species Nymphoides peltata to gradual and rapid rising water levels under two nutrient concentrations (1 g and 12 g of slow released fertilizer (N-P-K: 16-8-12) per container filled with 8 kg washed sand), and predicted the population expansion after these floods. The results showed that the capacity for petiole elongation was dependent on leaf age, and only leaves that were no more than five days old had the capability to reach the water surface when the water level increased rapidly from 50 cm to 300 cm. Plants subjected to a gradual rising water level tracked the increase in water depth whose petioles elongated at 3.96 ± 1.70 cm per day and 4.80 ± 0.16 cm per day under low and high nutrient concentrations respectively throughout the experiment period. When water levels were rapidly raised, leaf petioles elongated rapidly at 25.48 ± 1.51 cm per day and 26.64 ± 2.24 cm per day under low and high nutrient concentrations respectively during the first ten days. Plants under a constant water level maintained highest mean leaf recruitment (mean 3.0 ± 0.33 leaves and 24.4 ± 5.87 leaves every ten days under low and high nutrient concentrations, respectively). Therefore, more young leaves existed in the canopy ensuring that when the water level increases, young leaves can rapidly emerge after submergence. Gradual water level rise did not significantly affect biomass and ramet production (4.75 ± 1.41 g and 5.50 ± 1.22 ramets in low nutrient; 48.49 ± 21.45 g and 35.67 ± 11.78 ramets in high nutrient), but rapid water level rise negatively affected ramet production in both nutrient concentrations (3.00 ± 1.26 ramets and 11.25 ± 4.19 ramets in low and high nutrients, respectively). The results indicated that continual leaf recruitment and rapid petiole elongation were both important ways in which N. peltata adapted to increasing water levels. Extreme flooding may be a disturbance factor that affects plant growth and the population expansion of N. peltata, while small gradual water level rise should not harm this species.  相似文献   

6.
The fungal pathogen Neozygites floridana Weiser and Muma has been evaluated as a classical biological candidate for introduction into Africa against the invasive tomato red spider mite Tetranychus evansi Baker and Pritchard. In this study, the effect of temperature on sporulation, germination and virulence of three isolates of N. floridana collected from T. evansi in three climatically distinct regions of Brazil and Argentina was determined. Six constant temperatures of 13 °C, 17 °C, 21 °C, 25 °C, 29 °C and 33 °C were tested for their effect on the ability of the three fungal isolates to sporulate, germinate and kill the mites. Six alternating-temperature regimes of 17-13 °C, 21-13 °C, 29-13 °C, 33-13 °C, 33-23 °C, 33-28 °C under a 12 h photophase were also tested to estimate virulence of the three isolates against T. evansi. The Vipos isolate discharged more conidia than isolates from Recife or Piracicaba at all temperatures and sporulation was strongly temperature dependent. Optimal sporulation rates were observed at 25 °C while optimal germination rates were observed at 25 °C and 29 °C. At 29 °C, the shortest mean survival time of T. evansi (3.16 days, 95% CI of 3.05-3.27) was observed for the isolate from Vipos, while the longest LT50 (3.47 days, 95% CI 3.34-3.59) was observed for the isolate from Piracicaba. Mortality of mites increased as the differences between alternating day and night temperatures increased from 8 °C (21-13 °C), to 10 °C (33-23 °C), to 16 °C (29-13 °C), with smallest and highest temperature differences of 4 °C (17-13 °C) and 20 °C (33-13 °C), both producing low mortalities. The overall results suggest that the Vipos isolate is better adapted to a wider range of temperatures than the other isolates tested.  相似文献   

7.
Ziziphus lotus (L.) Lam. is a deciduous shrub with intricately branched stems in the Rhamnaceae family. It's a dominant and economically important species widely distributed in active sand dunes in the southern desert of Tunisia. To provide basic information for its conservation and reintroduction, we studied the influence of environmental factors on seed germination patterns. The germination responses of seeds were determined over a wide range of constant temperatures (10–50 °C), polyethylene glycol (PEG)-6000 solutions of different osmotic potentials (0 to − 1 MPa) and burial depths (1–10 cm). Temperatures between 15 and 45 °C seem to be favorable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the most suitable temperature found (35 °C). The highest germination percentages (100%) were obtained under control conditions without PEG, and increasing moisture stress progressively inhibited seed germination, which was less than 5% at − 1 MPa. When tested for germination in distilled water, after PEG treatments, seeds germinated to the same extent as when fresh. When seeds buried deeply, there was a significant decrease in seedling emergence percentage and rate. Seedlings of Z. lotus emerged well at depths of 1–2 cm and could not emerge when sand burial depth was > 4 cm.  相似文献   

8.
钱永强  孙振元  韩蕾  巨关升 《生态学报》2010,30(15):3966-3973
异质环境下,克隆植物通过生理整合机制使资源在分株间实现共享,提高了其对异质性环境的适应能力,具有重要的生态进化意义,研究生理整合机制及其调控机理可为进一步发掘克隆植物应用潜力提供理论依据。以野牛草3个相连分株为材料,对其中一个分株用30%聚乙二醇6000(PEG-6000)模拟水分胁迫,通过Hoagland营养液培养试验,研究了异质水分环境下光合同化物在野牛草相连分株间的生理整合及分株叶片与根系内源激素ABA与IAA含量的变化规律。结果表明,14C-光合同化物在克隆片断内存在双向运输,但以向顶运输为主,异质水分环境下,受胁迫分株光合同化物的输出率明显降低,而与其相邻分株合成的光合同化物向受胁迫分株方向运输率明显增加;异质水分环境下,各分株ABA含量均明显增加,但以受胁迫的分株叶片及根系ABA的含量增加幅度最大,各分株IAA含量较对照均显著下降(P0.05),且以受胁迫分株IAA含量下降幅度最大;各分株叶片与根系ABA/IAA均显著提高(P0.05),相邻分株ABA/IAA增加幅度低于受胁迫分株。异质水分环境影响野牛草克隆分株间光合同化物的生理整合,且ABA与IAA在分株间光合同化物运输与分配过程中具有重要的调节作用。  相似文献   

9.
Ovigerous females of Cancer setosus are present year-round throughout most of its wide range along the Peruvian/Chilean Pacific coast (2°S-46°S). However, their number of egg-masses produced per year remains speculative and as such has neither been considered in latitudinal comparisons of reproduction, nor for its fisheries management. In order to reveal the effect of temperature on egg-mass production and egg-development, female C. setosus were held in through-flow aquaria under natural seasonal temperature conditions (16-23 °C) in Antofagasta (23°S), Northern Chile (05/2005-03/2006; 10 months), and at three constant temperatures (12, 16, 19 °C) in Puerto Montt (41°S), Central Southern Chile (09/2006-02/2007; 5 months). Female crabs uniformly produced up to 3 viable egg-masses within 4 1/2 months in Antofagasta and in Puerto Montt (at 19 °C). The second egg-mass was observed 62.5 days (± 7.6; N = 7) after the oviposition of the first clutch and a third egg-mass followed 73.5 days (± 12.5; N = 11) later in Antofagasta (at 16-23 °C). Comparably, a second oviposition took place 64.4 days (± 9.8, N = 5) after the first clutch and a third, 67.0 days (± 2.8, N = 2), thereafter, at 19 °C in Puerto Montt. At the two lower temperatures (16 and 12 °C) in Puerto Montt a second egg-mass was extruded after 82.8 days (± 28.9; N = 4) and 137 days (N = 1), respectively. The duration of egg-development from oviposition until larval hatching decreased from 65 days at 12.5 °C to 22.7 days at the observed upper temperature threshold of 22 °C. Based on the derived relationship between temperature and the duration of egg-development (y = 239.3175e− 0.107x; N = 21, r2 = 0.83) and data on monthly percentages of ovigerous females from field studies, the annual number of egg-masses of C. setosus was calculated. This analysis revealed an annual output of about one egg-mass close to the species northern and southern distributional limits in Casma (9°S) and Ancud (43°S), respectively, while at Coquimbo (29°S) about two and in Concepción (36°S) more than 3 egg-masses are produced per year.  相似文献   

10.
Abstract. Demographic changes in Cytisus balansae populations were studied during the first 10 yr after a fire, by comparing populations of different ages in which different cohorts were considered. In the study area this species constitutes a monospecific formation which undergoes periodic burning. We distinguished both new genets (seedlings or plants originating from seedlings, after the last fire) and three types of ramets (resprout clumps): rootstock ramets, basal-branch ramets and lateral-root ramets. We found that C. balansae regenerated rapidly after fire. Most seedlings, rootstock ramets and basal-branch ramets emerged in the first year after fire. Lateral-root ramets appeared mainly after 2 - 4 yr and continued to emerge in the following years. The numbers of ramets and new genets decreased with time, mainly during the first six years. Density variations between quadrats within each population also decreased. Survivorship varied between seedlings and type of ramet, and according to time of emergence. Survival curves for seedlings which emerged in the first year were concave, for rootstock ramets convex, and for the remainder of the ramets intermediate. The 10-yr-old population was dominated by rootstock ramets. Some were entirely dead but most of them had only some dead basal branches. At this age new lateral-root ramets were still emerging. The future of C. balansae populations is discussed on the basis of results obtained for old (25 - 30 yr) plants, growing in the prolonged absence of fire.  相似文献   

11.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

12.
13.
Constructed and estuarine wetlands, influenced by wastewater treatment plants, were investigated, with respect to microbial activity in terms of functional genes. The density and abundance of three denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases, in sediment soil samples from wastewater effluent-fed and estuarine wetlands, were quantified using the SYBR green-based real-time polymerase chain reaction (PCR). To assess seasonal effects (i.e., winter (average temperature ∼2 °C) versus spring (average temperature ∼20 °C)), the densities of denitrifying genes, with respect to the abundance of functional genes, for the two different wetlands were determined. The three functional genes for all the sampling sites ranged from 1.0 × 106 to 1.0 × 109 copies/g of soil. Without considering seasonal variation, the nitrite-reducing functional genes were dominant over the other two genes in the effluent-fed wetland samples. However, nitrate and nitrite-reducing functional genes were dominant in relatively cold and warm seasons, respectively, in the estuarine wetland samples. Even though robust patterns and conclusions could not be obtained from the limited investigations, patterns with certain trends and needs for potential future research directions were obtained.  相似文献   

14.
It is important to understand the effects of environmental conditions during plant growth on longevity and temperature response of pollen. Objectives of this study were to determine the influence of growth temperature and/or carbon dioxide (CO2) concentration on pollen longevity and temperature response of peanut and grain sorghum pollen. Plants were grown at daytime maximum/nighttime minimum temperatures of 32/22, 36/26, 40/30 and 44/34 °C at ambient (350 μmol mol−1) and at elevated (700 μmol mol−1) CO2 from emergence to maturity. At flowering, pollen longevity was estimated by measuring in vitro pollen germination at different time intervals after anther dehiscence. Temperature response of pollen was measured by germinating pollen on artificial growth medium at temperatures ranging from 12 to 48 °C in incubators at 4 °C intervals. Elevated growth temperature decreased pollen germination percentage in both crop species. Sorghum pollen had shorter longevity than peanut pollen. There was no influence of CO2 on pollen longevity. Pollen longevity of sorghum at 36/26 °C was about 2 h shorter than at 32/22 °C. There was no effect of growth temperature or CO2 on cardinal temperatures (Tmin, Topt, and Tmax) of pollen in both crop species. The Tmin, Topt, and Tmax identified at different growth temperatures and CO2 levels were similar at 14.9, 30.1, and 45.6 °C, respectively for peanut pollen. The corresponding values for sorghum pollen were 17.2, 29.4, and 41.7 °C. In conclusion, pollen longevity and pollen germination percentage was decreased by growth at elevated temperature, and pollen developed at elevated temperature and/or elevated CO2 did not have greater temperature tolerance.  相似文献   

15.
《Flora》2014,209(12):718-724
Sprouting is recognized as an important genet persistence strategy for clonal woody plants, but the role of sprouting may differ between species and between sexes, depending on physiological integration. We tested the effect of physiological integration on the mortality, recruitment and growth of the sprouting male and female ramets of two closely related dioecious shrubs of Lindera, in a field experiment using girdling manipulation. Although between-sex differences observed were obscure, we found between-species differences in the sprouting patterns. The rates of ramet mortality and recruitment were significantly lower for L. praecox than L. triloba. In L. praecox genets, the ramet production was low, and the main ramets might actively translocate assimilates towards the small sprouted ramets, which then facilitates high ramet growth and survival (sprout-nursing strategy). Meanwhile, in L. triloba genets, although many ramets were recruited, assimilate translocation from the main ramets to the sprouted ramets might be less abundant, which causes high ramet mortality (sprout-turnover strategy). For a more general knowledge of the various sprouting strategies in clonal plants, our study demonstrated that inter-specific comparisons using girdling experiments at the whole-plant level could reveal the role of physiological integration on the link between the sprouting pattern and above-ground structures of clonal plants.  相似文献   

16.
We incubated eggs of the Chinese ratsnake Zaocys dhumnades at four constant temperatures (24, 27, 30 and 30 °C) to examine the effects of incubation temperature on hatching success and hatchling phenotypes. Incubation length increased nonlinearly as temperature decreased, with the mean incubation length being 76.7 d at 24 °C, 57.4 d at 27 °C, 47.3 d at 30 °C, and 44.1 d at 33 °C. Hatching successes were lower at the two extreme temperatures (69% at 24 °C, and 44% at 33 °C) than at the other two moderate temperatures (96% at 27 °C, and 93% at 30 °C). Incubation temperature affected nearly all hatchling traits examined in this study. Incubation of Z. dhumnades eggs at 33 °C resulted in production of smaller hatchlings that characteristically had less-developed carcasses but contained more unutilized yolks. Hatchlings from eggs incubated at 27 and 30 °C did not differ in any examined traits. Taking the rate of embryonic development, hatching success and hatchling phenotypes into account, we conclude that the temperature range optimal for incubation of Z. dhumnades eggs is narrower than the range of 24−33 °C but should be wider than the range of 27−30 °C.  相似文献   

17.
In many ectotherms, selection of environmental thermal niches may positively affect growth, nutrient assimilation rates, immune system function, and ultimately survival. Temperature preference in some turtle species may be influenced by environmental conditions, including acclimation temperature. We tested for effects of acclimation temperature (22 °C, 27 °C) on the selected temperature and movement patterns of 14 juvenile Malaclemys terrapin (Reptilia: Emydidae) in an aquatic thermal gradient of 14–34 °C and in single-temperature (22 °C, 27 °C) control tests. Among 8–10 month old terrapins, acclimation temperature influenced activity and movement patterns but did not affect temperature selection. In thermal gradient and single-temperature control tests, turtles acclimated to 27 °C used more tank chambers and relocated between chambers significantly more frequently than individuals acclimated to 22 °C. However, acclimation temperature did not affect temperature selection: both 22- and 27 °C-acclimated turtles selected the warmest temperature (34 °C), and avoided the other temperatures available, during thermal gradient tests. These results suggest that young M. terrapin are capable of detecting small temperature increments and prefer warm temperatures that may positively influence growth and metabolism.  相似文献   

18.
Conducting enzymatic stopped-flow experiments at temperatures far removed from ambient can be very problematic because extremes in temperature (<10 °C or >30 °C) can damage the machine or the enzyme. We have devised a simple manifold that can be attached to most commercial stopped-flow systems that is independently heated or cooled separate from the main stopped-flow system. Careful calibration of the flow circuit allows the sample to be heated or cooled to the measurement temperature (−8 to +40 °C) 1 to 2 s before mixing in the reaction chamber. This approach allows measurements at temperatures where the stopped flow or the protein is normally unstable. To validate the manifold, we investigated the well-defined ATP-induced dissociation of rabbit muscle myosin subfragment 1 (S1) from its complex with pyrene-labeled actin. This process has both temperature-dependent and -independent components. Use of ethylene glycol allowed us to measure the reaction below 0 °C and up to 42 °C, and as expected the second-order rate constant (K1k+2) and the maximum rate of dissociation (k+2) both increased with temperature, whereas 1/K1 is unaffected by the change in temperature.  相似文献   

19.
In order to preserve key activities or improve survival, insects facing variable and unfavourable thermal environments may employ physiological adjustments on a daily basis. Here, we investigate the survival of laboratory-reared adult Cydia pomonella at high or low temperatures and their responses to pre-treatments at sub-lethal temperatures over short time-scales. We also determined critical thermal limits (CTLs) of activity of C. pomonella and the effect of different rates of cooling or heating on CTLs to complement the survival assays. Temperature and duration of exposure significantly affected adult C. pomonella survival with more extreme temperatures and/or longer durations proving to be more lethal. Lethal temperatures, explored between −20 °C to −5 °C and 32 °C to 47 °C over 0.5, 1, 2, 3 and 4 h exposures, for 50% of the population of adult C. pomonella were −12 °C for 2 h and 44 °C for 2 h. Investigation of rapid thermal responses (i.e. hardening) found limited low temperature responses but more pronounced high temperature responses. For example, C. pomonella pre-treated for 2 h at 5 °C improved survival at −9 °C for 2 h from 50% to 90% (p < 0.001). At high temperatures, pre-treatment at 37 °C for 1 h markedly improved survival at 43 °C for 2 h from 20% to 90% (p < 0.0001). We also examined cross-tolerance of thermal stressors. Here, low temperature pre-treatments did not improve high temperature survival, while high temperature pre-treatment (37 °C for 1 h) significantly improved low temperature survival (−9 °C for 2 h). Inducible cross-tolerance implicates a heat shock protein response. Critical thermal minima (CTmin) were not significantly affected by cooling at rates of 0.06, 0.12 and 0.25 °C min−1 (CTmin range: 0.3-1.3 °C). By contrast, critical thermal maxima (CTmax) were significantly affected by heating at these rates and ranged from 42.5 to 44.9 °C. In sum, these results suggest pronounced plasticity of acute high temperature tolerance in adult C. pomonella, but limited acute low temperature responses. We discuss these results in the context of local agroecosystem microclimate recordings. These responses are significant to pest control programmes presently underway and have implications for understanding the evolution of thermal tolerance in these and other insects.  相似文献   

20.
Physiological integration has been documented in many clonal plants growing under resource heterogeneity. Little is still known about the response of physiological integration to heterogeneous ultraviolet-B radiation. In this paper, the changes in intensity of physiological integration and of physiological parameters under homogeneous and heterogeneous ultraviolet-B radiation (280-315 nm) were measured in order to test the hypothesis that in addition to resource integration a defensive integration in Trifolium repens might exist as well. For this purpose, homogeneous and heterogeneous ultraviolet-B radiation was applied to pairs of connected and severed ramets of the stoloniferous herb Trifolium repens. Changes in intensity of water and nutrient integration were followed with acid fuchsin dye and 15N-isotope labeling of the xylem water transport. In order to assess the patterns of physiological integration contents of chlorophyll, ultraviolet-B absorbing compounds, soluble sugar and protein were determined and activities of superoxide dismutase (SOD) and peroxidase (POD) measured. When ramets were connected and exposed to heterogeneous UV-B radiation, the velocity of water transportation from the UV-B treated ramet to its connected sister ramet was markedly lower and the percentage of 15N left in labelled ramets that suffered from enhanced UV-B radiation was higher and their transfer to unlabelled ramets lower. In comparison with clones under homogeneous ultraviolet-B radiation, the content of chlorophyll, ultraviolet-B absorbing compounds, soluble sugar and activities of SOD and POD increased notably if ultraviolet-B stressed ramets were connected to untreated ramets. Chlorophyll and UV-B absorbing compounds were shared between connected ramets under heterogeneous UV-B radiation. This indicated that physiological connection improved the performance of whole clonal plants under heterogeneous ultraviolet-B radiation. The intensity of physiological integration of T. repens for resources decreased under heterogeneous ultraviolet-B radiation in favor of the stressed ramets. Ultraviolet-B stressed ramets benefited from unstressed ramets by physiological integration, supporting the hypothesis that clonal plants are able to optimize the efficiency of their resistance maintaining their presence also in less favorable sites. The results could be helpful for further understanding of the function of heterogeneous UV-B radiation on growth regulation and microevolution in clonal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号