首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populations of a rheophilic cyprinid Barbus barbus have declined in last decades, which created a need of conservation aquaculture. Production of stocking material in controlled conditions calls for optimization of the two major factors, temperature and diet. Condition, growth and food conversion ratio in fish fed a formulated diet Aller Futura were compared with those on natural food—frozen Chironomidae larvae at 17, 21 and 25 °C. Groups of 60 early juveniles (0.6–3.7 g) were reared in each of 18 aquaria in which six experimental groups were run in triplicate. Daily food ratios were adjusted according to fish biomass, differences in hydration between the two diets and rearing temperature. No mortality occurred during the experiment. Condition coefficient K was significantly higher in fish fed Aller Futura compared to those fed Chironomidae irrespective of temperature tested; body deformities were not recorded. Relative growth rate at the same temperature was always higher in fish on the formulated diet than in those fed Chironomidae, and food conversion ratio was always suppressed, both suggesting an efficient utilization of Aller Futura for growth in B. barbus early juveniles. On both diets the coefficient K was depressed at 21 °C. Relative growth rate (RGR) was accelerated with temperature according the Krogh’s “normal curve” within the range 21–25 °C, while at lower temperatures (17–21 °C) the observed values of temperature coefficient Q10 were much higher than the theoretical Q10 values based on Krogh’s “normal curve”. Food conversion ratios (FCR) were reduced on both diets at 21 and 25 °C. Theoretical optimum temperatures for food conversion were 22.0 and 23.6 °C. Summing up, responses of three independent indices: condition, growth and food utilization locate the optimum temperature for B. barbus between 21 and 25 °C. No evidence was found that the effect of temperature on these indices was substantially modified by the diet.  相似文献   

2.
The effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee were examined in the laboratory. Exposed to 45 different combinations of temperature (10–30 °C) and salinity (0–40) under saturating irradiance, G. instriatum exhibited its maximum growth rate of 0.7 divisions/day at a combination of 25 °C and a salinity of 30. Optimum growth rates (>0.5 divisions/day) were observed at temperatures ranging from 20 to 30 °C and at salinities from 10 to 35. The organism could not grow at ≤10 °C. In addition, G. instriatum burst at a salinity of 0 at all temperatures, but grew at a salinity of 5 at temperatures between 20 and 25 °C. It is noteworthy that G. instriatum is a euryhaline organism that can live under extremely low salinity. Factorial analysis revealed that the contributions of temperature and salinity to its growth of the organism were almost equal. The irradiance at the light compensation point (I0) was 10.6 μmol/(m2 s) and the saturated irradiance for growth (Is) was 70 μmol/(m2 s), which was lower than Is for several other harmful dinoflagellates (90–110 μmol/(m2 s)).  相似文献   

3.
In this study, we apply Fry's classification of environmental factors to demonstrate the limiting effects of oxygen and its interaction with temperature on the growth of juvenile P. lethostigma. We also evaluated the properties of two metabolic indices, marginal metabolic scope (MMS) and limiting oxygen concentration (LOC), as indicators of metabolic scope. We found that oxygen limitation has its greatest impact near the optimum temperature for growth of the species. At 29 °C a reduction from 6.00 mg/L to 4.00 mg/L caused a 50% reduction in growth rate while at 27 °C the reduction had no significant effect on growth rate. The results are particularly relevant because these temperatures and oxygen concentrations are commonly observed in nursery areas during summer months. At all temperatures fish from the lowest oxygen treatment (1.75 mg/L) had negative growth rates. Comparisons between daily oscillating oxygen treatments and constant treatments failed to demonstrate significant effects. At temperatures past the optimum, growth rates between the 6.00 mg/L and 4.00 mg/L treatments were not statistically different. LOC was significantly affected by temperature, oxygen, and their interaction. Estimates were positively correlated with oxygen treatment (R2 > 0.71) and negatively correlated with temperature at moderate and low oxygen concentrations (R2 > − 0.84). MMS was significantly affected by temperature and oxygen and was significantly correlated with oxygen treatment (R2 > − 0.91), but correlations with temperature were not as clear. In conclusion, oxygen and temperature interactions have significant effects on metabolic scope and growth rates of fish, well above the accepted hypoxia threshold of 2.00 mg/L and MMS has proved a useful estimator of the metabolic scope of the organism within an environment.  相似文献   

4.
5.
6.
The effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea were examined in the laboratory. The irradiance at the light compensation point (I0) was 14.40 μmol m− 2 s− 1 and the irradiance at growth saturation (Is) was 114 μmol m− 2 s− 1. We exposed A. sanguinea to 48 combinations of temperature (5-30 °C) and salinity (5-40) under saturating irradiance; it exhibited its maximum growth rate of 1.13 divisions/day at a combination of 25 °C and salinity of 20. A. sanguinea was able to grow at temperatures from 10 to 30 °C and salinities from 10 to 40. This study revealed that A. sanguinea was a eurythermal and euryhaline organism; in Japan it should have formed blooms in early summer, when salinity was relatively low. In addition, it was noteworthy that A. sanguinea had markedly cold-durability, retaining the motile form of vegetative cells for more than 50 days at 5 °C and at salinities of 25-30.  相似文献   

7.
Both field and laboratory studies were used to investigate the effects of temperature limitation and nutrient availability on seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a nearshore coral reef in the southern tip of Taiwan during 1999-2000. L. papillosa was a summer blooming alga abundant in August-November and G. coronopifolia was abundant year round except April-May. L. papillosa blooms in the summer were attributed to its preference for high temperatures and highly sensitivity to low temperatures. A wider temperature range and a significant stimulation of growth by high N inputs can explain the appearance of G. coronopifolia year round and also its maximum growth in November-March. Levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) in water column were extremely high, but the growth of these two rhodophytes still suffered nutrient limitation that the type and severity of nutrient limitation were variable over time and also between two species. The growth of L. papillosa was limited by P in the early growth stage (August-September) as indicated by decreased tissue P contents, increased C/P and N/P molar ratios and increased alkaline phosphatase activity (APA) and in the later growth stage, it was subjected to N-limitation, evidenced by decreased tissue N contents and C/P and N/P molar ratios and increased tissue P contents. The growth of G. coronopifolia was also P-limited as indicated by increased tissue N contents and concomitantly decreased tissue P contents, while marked drops in tissue P contents below the subsistence level in mid September and December 1999 reveal severe P limitation, which was supported by increased alkaline phosphatase activity. Higher critical nutrient contents and nutrient thresholds for maximum growth of G. coronopifolia suggest that G. coronopifolia faced more frequent nutrient limitation compared to L. papillosa. In conclusion, the results from these laboratory and field studies provide evidence that the seasonal abundance of L. papillosa and G. coronopifolia from southern Taiwan was determined by seasonal variations in seawater temperatures and nutrient concentrations as well as different physiological growth strategies. Seawater temperature and nutrient availability were important determinants of seasonal abundance of L. papillosa while the seasonal abundance of G. coronopifolia was influenced by nutrient availability.  相似文献   

8.
Annual growth rates of Antarctic marine organisms are low compared to their relatives from warmer waters. Previous studies hypothesise that high food availability during austral spring–summer may enable Antarctic invertebrates to attain comparatively high short-term growth rates despite the low temperature. Neither a temperature-growth experiment with juvenile Adamussium colbecki (Smith 1902) nor the comparison of A. colbecki summer growth rates with an empirical scallop specific growth-to-temperature relationship could confirm this hypothesis. Hence, summer growth rates of young, immature A. colbecki are strongly affected by temperature, i.e. no uncoupling from temperature.  相似文献   

9.
The size of cheilostome bryozoan zooids has been widely discussed for its potential in inferring palaeotemperatures, based on correlations between zooid size and temperature. Studies in both the natural environment and under experimental laboratory conditions have shown that an increase in temperature significantly decreases zooid size in a range of bryozoan taxa. In order to test the effect of temperature on zooid size, the cheilostome bryozoan Cryptosula pallasiana was for the first time successfully cultured under laboratory conditions. C. pallasiana was grown at 14 °C and 18 °C using Rhodomonas sp. as a food organism. Zooid size, tentacle number and growth rate were measured over a period of 26 days. For comparison, zooids from colonies of C. pallasiana collected from the natural environment were measured in winter and summer months. Results showed that colonies grown in laboratory culture had significantly longer and wider zooids at 14 °C than at 18 °C. The specific growth rate of C. pallasiana doubled from 14 °C to 18 °C. Comparison of tentacle number in culture showed a significantly higher value at lower temperatures. This may be related to differing food availability, longer polypide life spans, or a shift of energy use at colder temperatures. In nature the zooids were significantly longer in colonies sampled in July than in January, a clear difference from laboratory results. The utility of cheilostome Bryozoa as indicators of environmental change and their potential for studies of paleotemperature are highlighted.  相似文献   

10.
Major glycolipids [monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)) and phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG)] as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from Anfeltia tobuchiensis (Rhodophyta), Laminaria japonica, Sargassum pallidum (Phaeophyta), Ulva fenestrata (Chlorophyta) and Zostera marina (Embriophyta), harvested in the Sea of Japan. GC analysis of their fatty acid (FA) composition revealed that the n-6 polyunsaturated FAs (PUFAs) shared the most part of the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG. In algae, it was related to the prevalence of 20:4n-6 over 20:5n-3 in non-photosynthetic lipids. Percentage of n-6 PUFAs as well as the sum of n-3 and n-6 PUFAs decreased in the following sequence: PC-->PE-->PG. The saturation increased in the lines of MGDG-->DGDG-->SQDG and PC-->PE-->PG. PG was close to SQDG by the level of saturation. Distribution of C(18) and C(20) PUFAs in polar lipids depended on taxonomic position of macrophytes. Balance between C(18) and C(20) PUFAs was preferably shifted to the side of C(20) PUFAs in PC and PE that was observed in contrast to glycolipids and PG from L. japonica containing both series of FAs. The set of major FAs of polar lipid classes can essentially differ from each other and from total lipids of macrophytes. For example, MGDG was found to accumulate characteristic fatty acids 16:4n-3, 16:3n-3, 18:3n-6 and 18:4n-3, 20:3n-6 in U. fenestrata, Z. marina, L. japonica and S. pallidum, respectively.  相似文献   

11.
Lemna paucicostata in Japan is classified into 4 types, N-1, N-2, K and S types. S type strains which are distributed in southern Japan grew more rapidly than other strains at the temperatures of both 27 and 17C. With the extension of the culture period at 17 C to which the plants had been transferred from 25C, the growth rate increased greatly in S type strains, while it decreased in N-1 type strains which are distributed widely from Hokkaido to Kyushu, and particularly in those distributed in the northern area. S type strains survived winter mostly in the form of normal fronds under natural conditions at Kyoto (minimum temperature is lower than OC), while most of the fronds of N-1 type strains died after producing seed before winter. Thus S type strains are considered to have adapted to the climate of southern Japan so as to survive winter in the form of fronds, while N-1 type strains overwinter in the form of seed. N-2 type strains which are distributed in the northern part of the area adjacent to the Japan Sea produced turion-like fronds during winter under natural conditions, while none of the other strains did. The K type strain which was found only at the campus of Kyoto University overwintered only in the form of fronds which produce no seed.  相似文献   

12.
Plasma samples from patients undergoing treatment in malaria endemic countries often contain anti-malaria drugs, that may overstate effects of specific antibodies in growth inhibition assays (GIA). We describe a modified assay that uses drug resistant P. falciparum parasites (W2) that circumvents the requirement for dialyzing samples that may likely contain drugs such as chloroquine and sulfadoxine/pyrimethamine (SP).  相似文献   

13.
The effects of temperature, pH, and NaCl concentrations on the infectivity of zoospores of Leptolegnia chapmanii (Argentine isolate) were determined for Aedes aegypti and Culex pipiens under laboratory conditions. Zoospores of L. chapmanii were infectious at temperatures between 10 and 35 degrees C but not at 5 or 40 degrees C. At the permissive temperatures, mortality rates in young instars were much higher than in older instars and larvae of Ae. aegypti were more susceptible to L. chapmanii than larvae of Cx. pipiens. At 25 degrees C, Ae. aegypti larvae challenged with L. chapmanii zoospores resulted in 100% infection at pH levels ranging from 4 to 10. Larvae of Cx. pipiens exposed to similar pH and zoospore concentrations resulted in increasing mortality rates from 62% to 99% at pH 4 to 7, respectively, and then decreased to 71% at pH 10. Aedes aegypti larvae exposed to L. chapmanii zoospores in NaCl concentrations ranging from 0 to 7 parts per thousand (ppt) at 25 degrees C resulted in 100% mortality while mortality rates for Cx. pipiens decreases from 96% in distilled water to 31.5% in water with 6 ppt NaCl. Control Cx. pipiens larvae died when exposed at a NaCl concentration of 7 ppt. Vegetative growth of L. chapmanii was negatively affected by NaCl concentrations. These results have demonstrated that the Argentinean isolate of L. chapmanii tolerated a wide range of temperatures, pH, and salinity, suggesting that it has the potential to adapt to a wide variety of mosquito habitats.  相似文献   

14.
A key step in the infection cycle by Aspergillus flavus in maize is sporulation of sclerotia present in soil or in crop debris. However, little information is available on this critical and important phase. This study included experiments on artificial (Czapek Dox Agar (CZ)) and natural (maize stalks) substrates under different conditions of temperature (T; from 5 to 45 °C) and water activity (a(w); from 0.50 to 0.99) levels to quantify sporulation from sclerotia. The mean numbers of spores were higher on defined nutritional medium in vitro on CZ agar than on maize stalks (4.5×10(6) spores/sclerotium versus 4.2×10(4) spores/sclerotium) with production initiated after 6 and 24h, respectively. Surprisingly, the optimal temperature was found at 30-35 °C for CZ agar (9.23×10(6) spores/sclerotium) and to be 20-25 °C for maize stalks (6.26×10(4) spores/sclerotium). Water stress imposition only reduced sporulation at ≤0.90 a(w.) With more available water no significant differences were found between 0.90 and 0.99 a(w). This type of data is critical in the development of a mechanistic model to predict the infection cycle of A. flavus in maize in relation to meteorological conditions.  相似文献   

15.
An opportunity to explore the effects of fluctuating temperatures on tropical scleractinian corals arose when diurnal warming (as large as 4.7 °C) was detected over the rich coral communities found within the back reef of Moorea, French Polynesia. In April and May 2007, experiments were completed to determine the effects of fluctuating temperature on Pocillopora meandrina and Porites rus, and consecutive trials were used to expose them for 13 days to 26 °C, 28 °C (ambient conditions), 30 °C, or a fluctuating treatment ranging from 26 to 30 °C over 24 h. The multivariate response was assessed using maximum dark-adapted quantum yield of PSII (FV/FM), Symbiodinium density, chlorophyll-a content, and calcification. In trial 1, multivariate physiology of both species was significantly affected by treatments, with the fluctuating temperature resulting in a 17-45% decline in Symbiodinium density (relative to the ambient) matching that occurring at a constant 30 °C; FV/FM, chlorophyll-a content, and calcification, did not differ between the fluctuating and the steady treatments. In contrast, in trial 2 that utilized corals collected two weeks after those used in trial 1, the corals were unaffected by the treatments, likely due to an environment × trial interaction caused by seasonal declines in Symbiodinium density. Together, these results demonstrate that short transgressions to ecologically relevant high and low temperatures can elicit a potentially detrimental response equivalent to that occurring upon exposure to a constant high temperature. The dissimilar responses among dependent variables and consecutive trials underscore the importance of temporal replication and multivariate approaches in coral ecophysiology. It is likely that recent history has a stronger effect on the response of corals to treatments than is currently recognized.  相似文献   

16.
Thirty-six programs have been set up to revegetate the degraded lake wetlands in east China since 2002. Most projects however faced deficiency of submerged macrophyte propagules. To solve the problem, alternative seedling sources must be found besides traditional field collection. This paper deals with an in vitro propagation protocol for two popularly used submerged macrophytes, Myriophyllum spicatum L. and Potamogeton crispus L. Full strength Murashige and Skoog-based liquid media (MS) plus 3% sucrose in addition to 0–2.0 mg l−1 6-benzylaminopurine (BA) and 0–1.0 mg l−1 indoleacetic acid (IAA) were tried for shoot regeneration. Meanwhile, full, half or quarter strength MS in addition to 0, 0.1 or 0.2 mg l−1 naphthaleneacetic acid (NAA) were tested for root induction, respectively. Results indicated that both species had the ability of regeneration from stem fragments in MS without further regulators. However, the addition of 2.0 mg l−1 BA with 0.2 or 1.0 mg l−1 IAA in MS drastically stimulated the regeneration efficiency of M. spicatum, while the addition of 2.0 mg l−1 BA with 0.2 or 0.5 mg l−1 IAA in MS significantly stimulated that of P. crispus. For root induction, full strength MS in combination with 0.1or 0.2 mg l−1 NAA was preferred by M. spicatum, and the same MS without or with 0.1 mg l−1 NAA was preferred by P. crispus. Seedlings of each species produced from tissue culture room had a 100% survival rate on clay, sandy loam or their mixture (1:1) in an artificial pond, and phenotypic plasticity was exhibited when the nutrient levels varied among the three types of sediments. This acclimation of seedlings helped develop the shoot and root systems, which ensured seedling quality and facilitated the transplantation. Our study has established an effective protocol to produce high quality seedlings for lake revegetation programs at a larger scale. Since the two species we tested represent different regeneration performances in nature but shared similar in vitro propagation conditions, this study has indicated a potentially wide use of the common media for preparing seedlings of other submerged macrophytes.  相似文献   

17.
Growth of fission yeast at the ends of its cylindrical cells switches from a monopolar to a bipolar mode, before it ceases during mitosis and cell division. Here we assume that these growth modes correspond to three stable states of an underlying regulatory circuit, which is a relatively simple and to a large degree autonomous subsystem of an otherwise complex cellular control system. We develop a switch-like logical circuit based on three elements defined as binary variables. Effects of circuit variables on each other are expressed in terms of logical operations. We analyse this circuit for its behavior ("phenotypes") after removing single or multiple operations ("mutants"). Known fission yeast polarity mutants such as those defective in the switch to bipolar growth can be classified based on these predicted 'phenotypes'. Differences in growth patterns between daughter cells in different bipolar growth mutants are also predicted by the circuit model. The model presented here should provide a useful framework to guide future experiments into mechanisms of cellular polarity. This paper illustrates the usefulness of simple logical circuits to describe and dissect features of complex regulatory processes such as the fission yeast growth patterns in both wild type and mutant cells.  相似文献   

18.
Amblyseius californicus was introduced into the UK in the early 1990s as a biocontrol agent against glasshouse red spider mite Tetranychus urticae. This study investigated the effects of temperature on the establishment potential of A. californicus in the UK in the light of recent reports of their successful overwintering outside of glasshouse environments. The developmental thresholds were 9.9 and 8.6 °C respectively using simple and weighted linear regression. Using the day-degree requirement per generation calculated by weighted regression (143 day-degrees) in combination with climate data, it was estimated that up to seven generations would be possible annually outdoors in the UK. Non-diapausing adult females froze at −22 °C, with 100% mortality after reaching their freezing temperature. Up to 90% of mites died before freezing after short exposures to low temperatures. Significant acclimation responses occurred; 90% of acclimated individuals survived 26 days exposure at 0 °C and 11 days at −5 °C (acclimated mites were reared at 19 °C, 6L:18D followed by 1 week at 10 °C, 12L:12D). Non-diapausing adult females survived over 3 months outdoors in winter under sheltered conditions and oviposition was observed. The experimental protocol used in this study is discussed as a pre-release screen for the establishment potential of other Amblyseius species, and similar non-native biocontrol agents.  相似文献   

19.
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.  相似文献   

20.
Colurella dicentra clones isolated from bay water in the Mississippi Gulf Coast were cultured with artificial seawater. Experiments were conducted to determine the effects of six algae species (Nannochloropsis oculata, Tetraselmis chuii, Chaetoceros gracilis, Rhodomonas salina, Isochrysis galbana, and Prorocentrum micans), six C. gracilis densities, and six N. oculata densities (25,000, 50,000, 100,000, 250,000, 500,000, and 1,000,000 cells ml− 1) on C. dicentra population growth. Algae type influenced rotifer production (p < 0.0001). C. gracilis treatment (9120 ± 3351SD) produced the highest number of rotifers followed by N. oculata (5760 ±2232SD). P. micans had the lowest number of rotifers, although not significantly different from numbers in T. chuii, R. salina, and I. galbana treatments (p > 0.05).The population growth rate (r) varied with algae species treatment. The highest values were recorded for C. gracilis treatment (0.22 to 0.26 d− 1), followed by N. oculata (0.21 to 0.24 d− 1), and the lowest for P. micans (− 0.19 to 0.14 d− 1). C. gracilis and N. oculata densities had significant effects (p < 0.0001) on C. dicentra population growth. The highest rotifer production was recorded at a C. gracilis density of 100,000 cells ml− 1, followed by 250,000 cells ml− 1 and 50,000 cells ml− 1. Algae densities of 500,000 cells ml− 1 and above produced the lowest rotifer numbers. Population growth rate (r) varied with C. gracilis densities. The highest values were observed for C. gracilis concentrations of 100,000 cells ml− 1 (0.17 to 0.19 d− 1), and the lowest for concentrations of 500,000 cells ml− 1 and above (− 0.19 to 0.09 d− 1). The 100,000 cells ml− 1N. oculata density gave the highest rotifer production followed by 50,000, 250,000, 25,000, and 500,000 cells ml− 1. Algae densities of 1,000,000 cells ml− 1 produced the lowest rotifer numbers. Population growth rate (r) varied with N. oculata densities, with the highest values obtained for algae densities of 100,000 cells ml− 1 (0.35 to 0.40 d− 1), and the lowest for concentrations of 1,000,000 cells ml− 1 (0.05 to 0.012 d− 1). This is the first report of C. dicentra in Mississippi Coastal waters, and perhaps the smallest marine rotifer species (93 by 49 μm) ever cultured successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号