首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsporidian intrasporal sugars and their role in germination   总被引:5,自引:0,他引:5  
The hypothesis that spores of terrestrial and aquatic microsporidia differ in their utilization of sugars was tested by evaluating the sugars in germinated and ungerminated spores of several species in each category. The aquatic species tested were Vavraia culicis, Edhazardia aedis, and Nosema algerae and the terrestrial species were Vairimorpha necatrix, Nosema disstriae, Nosema apis, Vairimorpha lymantriae, and Nosema spp. from Spodoptera exigua and Plutella xylostella. The percentage germination varied between species, ranging between 40 and 92%. Total sugars (anthrone reactive) and reducing sugars (Nelson's test) remained unchanged through germination in the three terrestrial species tested; however, reducing sugars increased significantly in the aquatic species. High-performance liquid chromatography and gas chromatography revealed a preponderance of trehalose in all species and large quantities of sorbitol in all species except N. algerae and E. aedis. Other sugars were present in some species in much lower concentrations. After germination no changes in sugar content were observed in terrestrial species; however, all aquatic species lost trehalose with a concomitant increase in fructose and/or glucose concentrations. Increased osmotic potential from breakdown of trehalose has been postulated to induce germination of the aquatic species, but another explanation must be found for the terrestrial species.  相似文献   

2.
All vascular plants, classified by life and growth form into six groups, four groups of hydrophytes (lemnids, nymphaeids, elodeids and isoetids), helophytes, and terrestrial species of pond margins, were inventoried in 64 SE Norwegian agricultural landscape ponds and their adjacent margins. The study sites varied considerably with respect to species richness; 0–4 for each hydrophyte group, 0–9 for helophytes, and 13–77 for terrestrial species. A total of 56 explanatory variables were recorded for each pond and adjacent margin to explain the observed richness variability.  相似文献   

3.
We comparatively examined the trunk musculature and prezygapophyseal angle of mid‐trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia, Amphiuma tridactylum, Necturus maculosus and Andrias japonicus; semi‐aquatic Cynops pyrrhogaster, Cynops ensicauda; and terrestrial Hynobius nigrescens, Hynobius lichenatus and Ambystoma tigrinum). We found that the more terrestrial species were characterized by larger dorsal and abdominal muscle weight ratios compared with those of the more aquatic species, whereas muscle ratios of the lateral hypaxial musculature were larger in the more aquatic species. The lateral hypaxial muscles were thicker in the more aquatic species, whereas the M. rectus abdominis was more differentiated in the more terrestrial species. Our results suggest that larger lateral hypaxial muscles function for lateral bending during underwater locomotion in aquatic species. Larger dorsalis and abdominal muscles facilitate resistance against sagittal extension of the trunk, stabilization and support of the ventral contour line against gravity in terrestrial species. The more aquatic species possessed a more horizontal prezygapophyseal angle for more flexible lateral locomotion. In contrast, the more terrestrial species have an increasingly vertical prezygapophyseal angle to provide stronger column support against gravity. Thus, we conclude trunk structure in urodeles differs clearly according to their locomotive modes.  相似文献   

4.
ABSTRACT.   The Himalayan Mountains have more specialist river birds than anywhere on earth, but factors permitting their coexistence have not been evaluated. We examined potential ecological segregation of five sympatric insectivores based on diet, morphology, and foraging behavior during the breeding and nonbreeding seasons in central Nepal. Little Forktails ( Enicurus scouleri ) and Brown Dippers ( Cinclus pallasii ) were highly aquatic in habitat use and diet (89–96% of prey of aquatic origin), but took prey that differed in size and composition. Spotted Forktails ( E. maculatus ) foraged primarily along channel margins, and took more aquatic than terrestrial prey (59% vs. 40%). White-capped ( Chaimorrornis leucocephalus ) and Plumbeous ( Rhyacornis fuliginosus ) water redstarts took primarily terrestrial or aerial prey by gleaning marginal surfaces and flycatching over channels. Two species were similar morphologically (Little Forktail and Plumbeous Water Redstart), but had different diets. Our results illustrate clear ecological separation among this guild of co-occurring river birds on one or more niche dimensions that we suggest is mediated by the physical complexity of mountain, riverine habitats.  相似文献   

5.
Several studies have indicated that in birds breathing frequency ( f , breaths min−1) scales to the −1/3 of body weight ( W , kg); this is different from the −1/4 of mammals. We wondered if this discrepancy was due to the peculiar scaling pattern of aquatic birds, as is the case of aquatic mammals. In fact, we had noted previously that the allometric scaling of f differs considerably between aquatic and terrestrial mammals, respectively, W −0.42 and W −0.25. Measurements of f were obtained in 48 aquatic birds of 22 species and in 35 terrestrial birds of 27 species, during resting conditions on land. Additional data from 11 aquatic and 14 terrestrial species, different from the ones measured, were obtained from the literature. The allometric curve of all species combined (terrestrial and aquatic, n =74) was f =13.3 W −0.36, similar to what is reported in previous studies. However, the allometric curve of the aquatic species ( n =33, f =14.5 W −0.56) differed greatly ( P <0.001) from that of the terrestrial species ( n =41, f =13.4 W −0.26). On average, f of aquatic birds of the 3–5 kg range was 63%, and that of birds of larger size was 57%, of the values of terrestrial birds of similar W . We conclude that, as in mammals, also in terrestrial birds f scales to the −1/4 exponent of W . The similarity of the scaling patterns of f between aquatic birds and mammals suggests a common breathing adaptation to life in the aquatic environment irrespective of phylogenetic relations.  相似文献   

6.
张欣  邓巍  朱娅佼  李娜  肖文  杨晓燕 《生态学报》2022,42(12):5059-5066
为探究微生物在流域中的水、陆分布差异和相互关系,对澜沧江两条支流捕食线虫真菌多样性水陆分布进行了调查研究。在枯水期,以澜沧江一级支流沘江和黑惠江为研究区域,系统布设12个采样点(水流交汇点),每个采样点采集水、陆对称样品各5份,共采集土样120份。结合传统分离纯化、形态学及分子生物学方法筛选和鉴定菌株,按照《Nematode-Trapping Fungi》进行分类,共获得2属13种88株捕食线虫真菌;其中,陆地样品中共分离到2属11种45株,水体底泥中分离出1属10种43株,检出率分别为41.67%和53.33%。结果表明,澜沧江两条支流捕食线虫真菌在物种、属、群落结构3个层面上均存在水陆差异,也相互联系;陆地土壤可能是流域内捕食线虫真菌多样性的源,水流是其重要的传播因子。在流域生态系统内,水陆间的扩散限制和水流的连通性都是维持微生物物种多样性的重要机制。  相似文献   

7.
The evolution of ecological trade-offs is an important component of ecological specialization and adaptive radiation. However, the pattern that would show that evolutionary trade-offs have occurred between traits among species has not been clearly defined. In this paper, we propose a phylogeny-based definition of an evolutionary trade-off, and apply it to an analysis of the evolution of trade-offs in locomotor performance in emydid turtles. We quantified aquatic and terrestrial speed and endurance for up to 16 species, including aquatic, semi-terrestrial and terrestrial emydids. Emydid phylogeny was reconstructed from morphological characters and nuclear and mitochondrial DNA sequences. Surprisingly, we find that there have been no trade-offs in aquatic and terrestrial speed among species. Instead, specialization to aquatic and terrestrial habitats seems to have involved trade-offs in speed and endurance. Given that trade-offs between speed and endurance may be widespread, they may underlie specialization to different habitats in many other groups.  相似文献   

8.
While large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: 1) which large herbivores (> 10 kg) have a (semi‐)aquatic lifestyle and are important consumers of submerged vascular plants, 2) their impact on submerged plant abundance and species composition, and 3) their ecosystem functions. We grouped herbivores according to diet, habitat selection and movement ecology: 1) Fully aquatic species, either resident or migratory (manatees, dugongs, turtles), 2) Semi‐aquatic species that live both in water and on land, either resident or migratory (swans), 3) Resident semi‐aquatic species that live in water and forage mainly on land (hippopotamuses, beavers, capybara), 4) Resident terrestrial species with relatively large home ranges that frequent aquatic habitats (cervids, water buffalo, lowland tapir). Fully aquatic species and swans have the strongest impact on submerged plant abundance and species composition. They may maintain grazing lawns. Because they sometimes target belowground parts, their activity can result in local collapse of plant beds. Semi‐aquatic species and turtles serve as important aquatic–terrestrial linkages, by transporting nutrients across ecosystem boundaries. Hippopotamuses and beavers are important geomorphological engineers, capable of altering the land and hydrology at landscape scales. Migratory species and terrestrial species with large home ranges are potentially important dispersal vectors of plant propagules and nutrients. Clearly, large aquatic herbivores have strong impacts on associated species and can be critical ecosystem engineers of aquatic systems, with the ability to modify direct and indirect functional pathways in ecosystems. While global populations of large aquatic herbivores are declining, some show remarkable local recoveries with dramatic consequences for the systems they inhabit. A better understanding of these functional roles will help set priorities for the effective management of large aquatic herbivores along with the plant habitats they rely on.  相似文献   

9.
Salamanders in the genus Desmognathus (Caudata: Plethodontidae) are distributed along an aquatic to terrestrial habitat gradient in the southern Appalachian Mountains. The spatial distribution of species is believed to have formed as aquatic ancestors displaced lineages by competition and predatory interactions into less optimal terrestrial habitats. Aquatic and terrestrial species may also display different patterns of genetic diversity due to the differing likelihood of gene flow via aquatic corridors. To determine whether phylogenetic patterns were consistent with these hypotheses, we sequenced portions of the cytochrome oxidase I and 12S rRNA genes of the mitochondrial genome from 96 individuals belonging to 10 species in the genus Desmognathus. In addition, we combined our dataset with an earlier published dataset for the 12S rRNA genes. The order of species divergence is consistent with aquatic ancestors having displaced taxa into more terrestrial habitats, but the major lineages within the genus Desmognathus arose suddenly, and therefore, the specific sequence of events is not well resolved. The phylogenetic analyses among species suggest that direct-development and a terrestrial lifestyle are ancestral in the genus Desmognathus, but the degree of adult terrestriallity is labile, with some species having re-invaded terrestrial habitats. We present evidence of a clade of Desmognathus quadramaculatus from North Carolina that is distinct from the D. quadramaculatus/Desmognathus marmoratus clade. Within species, estimates of Tajima's D and Fu and Li's statistics suggest the species experienced population expansions at different times in the past. Current levels of sequence diversity in northern populations, therefore, reflect different arrival times, and hence, differences in the opportunity for among population divergence. The recent arrival of most species over large portions of their geographic ranges suggests that most extant communities have been assembled, a posteriori, by the recent assortment of species along the aquatic to terrestrial gradient according to their ecologies.  相似文献   

10.
Body size of organisms as a fitness-related phenotype has evolved in response to local conditions, often through the size-dependent thermoregulatory mechanisms. The direction and degree of this response should depend on animals’ lifestyle in terms of the preference for terrestrial or aquatic conditions, especially so for adult anurans that differ in lifestyle among species but all must maintain certain body temperatures for metabolism. It may be expected that anuran species frequently exposed to terrestrial environments characterized by fluctuant thermal conditions are more plastic in body size along thermal gradients than those highly relaying on aquatic environments where thermal conditions are relatively stable. We test this prediction using both interspecific and intraspecific data. With anurans in China as the model organisms, we show that across terrestrial species but not aquatic species, body size decreases with increasing ambient temperature. From the published literature worldwide, we summarized that more terrestrial versus fewer aquatic species follow the predicted ecogeographical size patterns. In addition, both interspecific and intraspecific data reveal that arboreal anurans do not exhibit the size cline, probably because relatively warm climates experienced by these species impose weak selective pressures on heat conservation or adaptation to tree-climbing constrains the variation in body size. Our finding highlights the importance of taking lifestyle into account when assessing macroevolutionary trends in body size for anurans in particular and ectothermic taxa in general.  相似文献   

11.
A survey of protostelids in ponds of northeastern Germany showed a high degree of similarity between the species assemblages from submerged aquatic and terrestrial litter. Twelve species were recovered from 115 samples. A statistical analysis of species accumulation curves indicated that 90 % of the total diversity was recovered for both aquatic and terrestrial litter. All of the more common species were observed in both aquatic and terrestrial samples. However, 24 % of all cultures from terrestrial samples were positive for protostelids, compared with only 12 % for aquatic samples. An additional 20 samples collected from the water column did not yield any protostelids. The study indicates that vegetative stages of most protostelids seem to be able to survive and probably multiply on litter submerged in fresh water, but do not live as plankton. Most probably, submerged substrata are sinks for protostelid populations.  相似文献   

12.
Understanding how the climatic niche of species evolved has been a topic of high interest in current theoretical and applied macroecological studies. However, little is known regarding how species traits might influence climatic niche evolution. Here, we evaluated patterns of climatic niche evolution in turtles (tortoises and freshwater turtles) and whether species habitat (terrestrial or aquatic) influences these patterns. We used phylogenetic, climatic and distribution data for 261 species to estimate their climatic niches. Then, we compared whether niche overlap between sister species was higher than between random species pairs and evaluated whether niche optima and rates varied between aquatic and terrestrial species. Sister species had higher values of niche overlap than random species pairs, suggesting phylogenetic climatic niche conservatism in turtles. The climatic niche evolution of the group followed an Ornstein–Uhlenbeck model with different optimum values for aquatic and terrestrial species, but we did not find consistent evidence of differences in their rates of climatic niche evolution. We conclude that phylogenetic climatic niche conservatism occurs among turtle species. Furthermore, terrestrial and aquatic species occupy different climatic niches but these seem to have evolved at similar evolutionary rates, reinforcing the importance of habitat in understanding species climatic niches and their evolution.  相似文献   

13.
CAM photosynthesis in submerged aquatic plants   总被引:1,自引:0,他引:1  
Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism selected in response to aridity in terrestrial habitats, and, in aquatic environments, to ambient limitations of carbon. Evidence is reviewed for its presence in five genera of aquatic vascular plants, includingIsoëtes, Sagittaria, Vallisneria, Crassula, andLittorella. Initially, aquatic CAM was considered by some to be an oxymoron, but some aquatic species have been studied in sufficient detail to say definitively that they possess CAM photosynthesis. CO2-concentrating mechanisms in photosynthetic organs require a barrier to leakage; e.g., terrestrial C4 plants have suberized bundle sheath cells and terrestrial CAM plants high stomatal resistance. In aquatic CAM plants the primary barrier to CO2 leakage is the extremely high difrusional resistance of water. This, coupled with the sink provided by extensive intercellular gas space, generates daytime CO2(pi) comparable to terrestrial CAM plants. CAM contributes to the carbon budget by both net carbon gain and carbon recycling, and the magnitude of each is environmentally influenced. Aquatic CAM plants inhabit sites where photosynthesis is potentially limited by carbon. Many occupy moderately fertile shallow temporary pools that experience extreme diel fluctuations in carbon availability. CAM plants are able to take advantage of elevated nighttime CO2 levels in these habitats. This gives them a competitive advantage over non-CAM species that are carbon starved during the day and an advantage over species that expend energy in membrane transport of bicarbonate. Some aquatic CAM plants are distributed in highly infertile lakes, where extreme carbon limitation and light are important selective factors. Compilation of reports on diel changes in titratable acidity and malate show 69 out of 180 species have significant overnight accumulation, although evidence is presented discounting CAM in some. It is concluded that similar proportions of the aquatic and terrestrial floras have evolved CAM photosynthesis. AquaticIsoëtes (Lycophyta) represent the oldest lineage of CAM plants and cladistic analysis supports an origin for CAM in seasonal wetlands, from which it has radiated into oligotrophic lakes and into terrestrial habitats. Temperate Zone terrestrial species share many characteristics with amphibious ancestors, which in their temporary terrestrial stage, produce functional stomata and switch from CAM to C3. Many lacustrineIsoëtes have retained the phenotypic plasticity of amphibious species and can adapt to an aerial environment by development of stomata and switching to C3. However, in some neotropical alpine species, adaptations to the lacustrine environment are genetically fixed and these constitutive species fail to produce stomata or loose CAM when artificially maintained in an aerial environment. It is hypothesized that neotropical lacustrine species may be more ancient in origin and have given rise to terrestrial species, which have retained most of the characteristics of their aquatic ancestry, including astomatous leaves, CAM and sediment-based carbon nutrition.  相似文献   

14.
15.
This study uses the carapace of emydid turtles to address hypothesized differences between terrestrial and aquatic species. Geometric morphometrics are used to quantify shell shape, and performance is estimated for two shell functions: shell strength and hydrodynamics. Aquatic turtle shells differ in shape from terrestrial turtle shells and are characterized by lower frontal areas and presumably lower drag. Terrestrial turtle shells are stronger than those of aquatic turtles; many-to-one mapping of morphology to function does not entirely mitigate a functional trade-off between mechanical strength and hydrodynamic performance. Furthermore, areas of morphospace characterized by exceptionally poor performance in either of the functions are not occupied by any emydid species. Though aquatic and terrestrial species show no significant differences in the rate of morphological evolution, aquatic species show a higher lineage density, indicative of a greater amount of convergence in their evolutionary history. The techniques employed in this study, including the modeling of theoretical shapes to assess performance in unoccupied areas of morphospace, suggest a framework for future studies of morphological variation.  相似文献   

16.
Bergmann's rule is the propensity for species‐mean body size to decrease with increasing temperature. Temperature‐dependent oxygen limitation has been hypothesized to help drive temperature–size relationships among ectotherms, including Bergmann's rule, where organisms reduce body size under warm oxygen‐limited conditions, thereby maintaining aerobic scope. Temperature‐dependent oxygen limitation should be most pronounced among aquatic ectotherms that cannot breathe aerially, as oxygen solubility in water decreases with increasing temperature. We use phylogenetically explicit analyses to show that species‐mean adult size of aquatic salamanders with branchial or cutaneous oxygen uptake becomes small in warm environments and large in cool environments, whereas body size of aquatic species with lungs (i.e., that respire aerially), as well as size of semiaquatic and terrestrial species do not decrease with temperature. We argue that oxygen limitation drives the evolution of small size in warm aquatic environments for species with aquatic respiration. More broadly, the stronger decline in size with temperature observed in aquatic versus terrestrial salamander species mirrors the relatively strong plastic declines in size observed previously among aquatic versus terrestrial invertebrates, suggesting that temperature‐dependent oxygen availability can help drive patterns of plasticity, micro‐ and macroevolution.  相似文献   

17.
1. It is increasingly realised that aquatic and terrestrial systems are closely linked. We investigated stable isotope variations in Odonata species, putative prey and basal resources of aquatic and terrestrial systems of northern Mongolia during summer. 2. In permanent ponds, δ13C values of Odonata larvae were distinctly lower than those of putative prey, suggesting that body tissue comprised largely of carbon originating from isotopically light carbon sources. Presumably, prey consumed during autumn and winter when carbon is internally recycled and/or methanotrophic bacteria form an important basal resource of the food web. In contrast, in a temporary pond, δ13C values of Odonata larvae were similar to those of putative prey, indicating that their body carbon originated mainly from prey species present. 3. Changes in δ15N and δ13C values between larvae and adults were species specific and reflected differential replacement of the larval isotopic signature by the terrestrial diet of adult Odonata. The replacement was more pronounced in Odonata species of permanent ponds than in those of the temporary pond, where larvae hatched later in the year. Replacement of larval carbon varied between tissues, with wings representing the larval isotopic signature whereas thoracic muscles and eggs reflected the δ15N and δ13C values of the terrestrial diet of adults. 4. The results suggest that because of their long larval development, Odonata species of permanent ponds carry the larval signature, which is partly replaced during their terrestrial life. Terrestrial prey forms the basis for egg production and thus the next generation of aquatic larvae. In temporary ponds, in contrast, Odonata species rely on prey from a single season, engage in a prolonged aquatic phase and hatch later, leaving less time to acquire terrestrial prey resources for offspring production. Stable isotope analysis provided important insights into the food webs of the waterbodies and their relationship to the terrestrial system.  相似文献   

18.
Correct species identifications are of tremendous importance for invasion ecology, as mistakes could lead to misdirecting limited resources against harmless species or inaction against problematic ones. DNA barcoding is becoming a promising and reliable tool for species identifications, however the efficacy of such molecular taxonomy depends on gene region(s) that provide a unique sequence to differentiate among species and on availability of reference sequences in existing genetic databases. Here, we assembled a list of aquatic and terrestrial non-indigenous species (NIS) and checked two leading genetic databases for corresponding sequences of six genome regions used for DNA barcoding. The genetic databases were checked in 2010, 2012, and 2016. All four aquatic kingdoms (Animalia, Chromista, Plantae and Protozoa) were initially equally represented in the genetic databases, with 64, 65, 69, and 61 % of NIS included, respectively. Sequences for terrestrial NIS were present at rates of 58 and 78 % for Animalia and Plantae, respectively. Six years later, the number of sequences for aquatic NIS increased to 75, 75, 74, and 63 % respectively, while those for terrestrial NIS increased to 74 and 88 % respectively. Genetic databases are marginally better populated with sequences of terrestrial NIS of plants compared to aquatic NIS and terrestrial NIS of animals. The rate at which sequences are added to databases is not equal among taxa. Though some groups of NIS are not detectable at all based on available data—mostly aquatic ones—encouragingly, current availability of sequences of taxa with environmental and/or economic impact is relatively good and continues to increase with time.  相似文献   

19.
Aquatic prey subsidies entering terrestrial habitats are well documented, but little is known about the degree to which these resources provide fitness benefits to riparian consumers. Riparian species take advantage of seasonal pulses of both terrestrial and aquatic prey, although aquatic resources are often overlooked in studies of how diet influences the reproductive ecology of these organisms. Ideally, the timing of resource pulses should occur at the time of highest reproductive demand. This study investigates the availability of aquatic (mayfly) and terrestrial (caterpillar) prey resources as well as the nestling diet of the prothonotary warbler (Protonotaria citrea) at two sites along the lower James River in Virginia during the 2014 breeding season. We found large differences in availability of prey items between the two sites, with one having significantly higher mayfly availability. Nestling diet was generally reflective of prey availability, and nestlings had faster mean growth rates at the site with higher aquatic prey availability. Terrestrial prey were fed more readily at the site with lower aquatic prey availability, and at this site, nestlings fed mayflies had higher mean growth rates than nestlings fed only terrestrial prey. Our results suggest that aquatic subsidies are an important resource for nestling birds and are crucial to understanding the breeding ecology of riparian species.  相似文献   

20.
Temporary dewatering constitutes a drastic change in conditions for aquatic vegetation. Species’ sustained performance under these conditions relies partly on their ability to produce a terrestrial phenotype. Such adaptations may include the development of self-supporting aboveground organs with higher dry matter content enabling plants to withstand gravity and smaller leaves with thicker cuticle to reduce evapotranspiration, leading to lower specific leaf area, higher leaf-construction costs and consequently higher leaf life span. The ability of aquatic plant species to produce a terrestrial-adapted phenotype may differ according to growth form and evolutionary history. The objectives of this study were to (1) measure the effects of dewatering on aquatic plant performance, (2) determine how growth form and phylogenetic position affect performance, and (3) relate plant performance to plasticity. To meet these objectives, we experimentally studied aquatic plant responses to dewatering by measuring survival, growth, and a set of traits describing the morphology and leaf-resource economy of eight aquatic plant species with contrasting phylogeny and growth forms. The ability of aquatic plants to withstand dewatering differed according to phylogeny but not to growth form. The eudicots presented high survival and similar growth rates under terrestrial compared to aquatic conditions, while monocots generally did not survive dewatering. These species produced phenotypic adjustments, such as denser aboveground organs and leaf plasticity, which can explain the maintenance of similar growth rates under terrestrial conditions. The relatively strong plasticity and performance of eudicots in terrestrial habitats suggests that their optimal niche is the interface between aquatic and terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号