首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Amazonian floodplains, plant survival is determined by adaptations and growth strategies to effectively capture sunlight and endure extended periods of waterlogging. By measuring gas exchange, quantum efficiency of photosystem 2 (PSII), and growth parameters, we investigated the combined effects of flooding gradients and light on two common evergreen floodplain tree species, the light-tolerant Cecropia latiloba and the shade-tolerant Pouteria glomerata. Individual plants were subjected to different combinations of light and flooding intensity in short-term and long-term experiments. Plants of C. latiloba lost all their leaves under total submersion treatments (plants flooded to apex and with reduced irradiance) and showed highest maximum assimilation rates (Amax) in not flooded, high light treatments (6.1 μmol CO2 m−2 s−1). Individuals of P. glomerata showed similar patterns, with Amax increasing from 1.9 μmol CO2 m−2 s−1 under total flooding to 7.1 μmol CO2 m−2 s−1 in not flooded, high light treatments. During the long-term flooding experiment, quantum efficiency of PSII (Fv/Fm) of C. latiloba was not affected by partial flooding. In contrast, in P. glomerata Fv/Fm decreased to values below 0.73 after 120 days of total flooding. Moreover, total submergence led P. glomerata to reduce significantly light saturation point (LSP), as compared to C. latiloba. For both species morphological adjustments to long-term flooding, such as the production of adventitious roots, resulted in reduced total biomass, relative growth rate (RGR) and leaf mass ratio (LMR). Growth increase in C. latiloba seemed to be more limited by low-light than by flooding. Therefore, the predominant occurrence of this species is in open areas with high light intensities and high levels of inundation. In P. glomerata flooding induced high reductions of growth and photosynthesis, whereas light was not limiting. This species is more abundant in positions where irradiance is reduced and periods of submergence are slightly modest. We could show that the physiological requirements are directly responsible for the flooding (C. latiloba) and shade (P. glomerata) tolerance of the two species, which explains their local distribution in Amazonian floodplain forests.  相似文献   

2.
Internal transcribed spacers (ITS) of nuclear ribosomal DNA and chloroplast rbcL gene sequence data were used to test the hypothesis that natural populations of Potamogeton intortusifolius J.B. He in China originated from hybridization between P. perfoliatus Linn. and P. wrightii Morong. Based on ITS sequences data, P. intortusifolius possessed heterozygous rDNA genotypes which confirmed the hybrid origin of P. intortusifolius. Chloroplast rbcL gene sequences of P. intortusifolius from Yichang population revealed the same chloroplast haplotype as P. perfoliatus and the samples of P. intortusifolius from Weinan population had the same chloroplast haplotype as P. wrightii, which indicated that both putative parental species had been the maternal parent and that the two populations of P. intortusifolius had independent origins. This study confirms P. intortusifolius as a reciprocal hybrid. Because P. × intortusifolius in China has the same hybrid origin as P. × anguillanus Koidz. in Japan, it is suggested that P. × intortusifolius should be a synonym of P. × anguillanus.  相似文献   

3.
Morphological, anatomical and physiological summer and winter leaf traits of Cistus incanus subsp. incanus, C. salvifolius and C. monspeliensis growing at the Botanical garden of Rome were analyzed. With regard to differences between summer and winter leaves of the considered species, leaf thickness (L) was 21% higher in summer than in winter leaves (mean of the considered species) and this increase was mostly the result of the increased palisade parenchyma thickness over the spongy parenchyma one (24 and 16% higher in summer than in winter leaves, respectively). Leaf mass area (LMA) and leaf tissue density (LTD) were 38% and 17% higher in summer than in winter leaves, respectively (mean of the considered species). The photosynthetic rate (PN), stomatal conductance (gs) and chlorophyll content (Chl) of summer leaves were 54%, 17% and 14% lower, respectively, than in winter leaves. C. monspeliensis summer leaves had the highest LMA, LTD, adaxial cuticle thickness (14.6 ± 1.8 mg cm−2, 1091 ± 94 mg cm−3, and 5.8 ± 1.7 μm, respectively) and the lowest mesophyll intercellular spaces (fias 38 ± 3%). Moreover, C. monspeliensis had the highest PN in summer (2.6 ± 0.1 μmol m−2 s−1) and C. incanus the highest PN and WUE (84% and 59% higher than the other species) in the favorable period, associated to a higher fias (42 ± 2%). C. salvifolius had the highest PN (54% higher than the other species) in winter. The plasticity index could allow a better interpretation of the habitat preference of the considered species. The physiological plasticity (PIp = 0.39, mean value of the considered species) was higher than the morphological (PIm = 0.22, mean value) and anatomical (PIa = 0.13, mean value) plasticity. Moreover, among the considered species, C. salvifolius and C. incanus are characterized by a larger PIa (0.14, mean value) which seems to be correlated with their wider ecological distribution and the more favorable conditions of the environments where they naturally occur. The highest PIm (0.29) of C. monspeliensis indicates that it can play a high adaptive role in highly stressed environments, like fire degraded Mediterranean areas in which it occurs.  相似文献   

4.
The effect of pH-control modes on cell growth and exopolysaccharide production by Tremella fuciformis was evaluated in a 5-L bioreactor. The results show that the maximal dry cell weight (DCW) and exopolysaccharide production were 23.57 and 4.48 g L−1 in pH-stat fermentation, where the maximal specific growth rate (μmax) and specific production rate of exopolysaccharide (PP/X) were 1.03 and 0.24 d−1, respectively; under pH-shift cultivation, the maximal DCW and exopolysaccharide production were 30.57 and 3.90 g L−1, where the μmax and PP/X were 1.21 and 0.06 d−1. Unlike batch fermentation, maximal DCW and exopolysaccharide production merely reached 15.04 and 2.0 g L−1, where the μmax and PP/X were 0.86 and 0.05 d−1, respectively. These results suggest that a pH-stat strategy is a more efficient way of performing the fermentation process to increase exopolysaccharide production. Furthermore, this research has also proved that the three-stage pH-control mode is effective for cell growth.  相似文献   

5.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

6.
Proper adjustment of thermoregulatory mechanisms ensures the survival of mammals when they are subjected to seasonal changes in their natural environment. To understand the physiological and ecological adaptations of Eothenomys olitor, we measured their metabolic rate, thermal conductance, body temperature (Tb) and evaporative water loss at a temperature range of 5–30 °C in summer. The thermal neutral zone (TNZ) of E. olitor was 20–27.5 °C, and the mean body temperature was 35.81±0.15 °C. Basal metabolic rate (BMR) was 2.81±0.11 ml O2/g h and mean minimum thermal conductance (Cm) was 0.18±0.01 ml O2/g h °C. Evaporative water loss (EWL) in E. olitor increased when the ambient temperature increased. The maximal evaporative water loss was 6.74±0.19 mg H2O/g h at 30 °C. These results indicated that E. olitor have relatively high BMR, low body temperature, low lower critical temperature, and normal thermal conductance. EWL plays an inportant role in temperature regulation. These characteristics are closely related to the living habitat of the species, and represent its adaptive strategy to the climate of the Yunnan-Kweichow Plateau, a low-latitude, high-altitude region where annual temperature fluctuations are small, but daily temperature fluctuations are greater.  相似文献   

7.
Thermogenic characteristics and evaporative water loss were measured at different temperatures in Tupaia belangeri. The thermal neutral zone (TNZ) of T. belangeri was 30–35 °C. Mean body temperature was 39.76±0.27 °C and mean body mass was 100.86±9.09 g. Basal metabolic rate (BMR) was 1.38±0.03 ml O2/g h. Average minimum thermal conductance (Cm) was 0.13±0.01 ml O2/g h °C. Evaporative water loss in T. belangeri increased when the temperature rose; the maximal evaporative water loss was 3.88±0.41 mg H2O/g h at 37.5 °C. The results may reflect features of small mammals in the sub-tropical plateau region: T. belangeri had high basal metabolic rate and high total thermal conductance, compared with the predicted values based on their body mass whilst their body temperatures are relatively high; T. belangeri has high levels of evaporative water loss and poor water-retention capacity. Evaporative water loss plays an important role in temperature regulation.  相似文献   

8.
Cobalt involvement in chemical and metallobiological processes entails largely unknown reactivity pathways with a variety of ligands. Such ligands include phosphonate and carboxylate-containing metal ion binders. In an attempt to investigate the nature and properties of species arising from aqueous interactions between Co(II) and N,N-bis(phosphonomethyl)-glycine (H5NTA2P), reactions between the two led to an assembly of species in (NH4)4[Co(H2O)6][(H2O)2Co(HNTA2P)Co(NH3)2(H2O)3]2[Co(NTA2P)(H2O)2]2 · 10H2O · 1.36CH3CH2OH (1) at pH ∼ 5.5. The analytical, spectroscopic and X-ray data on 1 reveal mononuclear and dinuclear complexes of Co(II) surrounded by oxygens, belonging to terminal carboxylates, phosphonates and bound water molecules, and nitrogen atoms from coordinated ammonia and HxNTA2Pq (x = 1, q = 4; x = 0, q = 5) ligands. Worth noting is the variable protonation state of the bound diphosphonate ligand and its ability to bridge two Co(II) centers with ostensibly differing coordination spheres. The assembly of three Co(II) species of variable nuclearity and composition attests to the importance of pH-specific conditions, under which “capturing” of more than one species can be achieved for a given Co(II):H5NTA2P stoichiometry in the presence of ammonia. Collectively, 1 provides a rare glimpse of a “slice” of the aqueous speciation of the binary Co(II)-H5NTA2P system, while its lattice composition projects key structural features in Co(II)-carboxyphosphonate materials.  相似文献   

9.
We present an overview of long-term changes in the floristic composition and growth areas in L. Peipsi (3555 km2, unregulated water level) that have occurred since the 1960s and a list of plant taxa containing 140 species of higher plants and 4 charophytes. A significant correlation was found between the relative abundance and frequency per stations (Fs) (Rs = 0.93). Data on five inhabitants of the eulittoral revealed significant (p < 0.05) inter-annual differences in Fs. Comparison of the data of Fs for 67 taxa for 1970-1980 (87 stations) and 1997-2007 (139 stations) showed a significant change in the Fs distribution (p < 0.03) and a decline (p < 0.05) for 20 taxa; for 15 species Fs had decreased two times or more. However, 14 of the markedly declined taxa, e.g. the long-term dominating submergent Potamogeton perfoliatus, belong still among the top 33 in the list. A significant (χ2 = 11.8; p < 0.028) change was observed in the species number of different frequency classes. The number of taxa in the Fs class 46-100 (92)% was 17 in 1970-1980 but only 3 in 1997-2007. The top of the list of macrophytes is dominated by circumpolar species and vicariants. Impoverishment of the flora in the course of eutrophication is expressed by the decrease in Fs; at the same time, the total number of species had not changed. Among the 20 declined taxa 14 are characteristic of the temporarily flooded and/or shallow-water zone of eutrophic water bodies (amphibious and emergent plants); the remaining taxa are shallow-water submergents. The simpliest explanation for their decrease is the expansion of thick reeds occupying suitable eulittoral habitats.  相似文献   

10.
The effects of temperature and oxygen saturation on the respiration rate of two cold stenothermal chironomids, Diamesa insignipes and Pseudodiamesa branickii were investigated. Fourth instar larvae were collected in winter in a glacio-rhithral stream (1300 m a.s.l., Alps, NE-Italy) and their respiration rate was measured with a Clark's electrode in the range 0-14 °C. The respiration rate was significantly higher in D. insignipes than in P. branickii at low temperatures (≤4 °C), higher in P. branickii between 8 and 12 °C and comparable at 14 °C. Higher values of R (regulation value), R25% (respiration rate at 25% oxygen saturation) and b1/b2 (slope ratio in piecewise linear regression), and lower values of Pc (critical pressure) and I (initial decrease) were recorded in P. branickii than in D. insignipes. These values are compatible with oxy-regulatory behaviour in P. branickii, whereas D. insignipes appeared to be almost an oxy-conformer. On the basis of this autoecological information, new implications regarding survival of species from cold, high altitude habitats under changing climatic conditions are made.  相似文献   

11.
The brown alga Laminaria japonica is distributed from southern Hokkaido to the northeastern Honshu in Japan. Recently, aquaculture of L. japonica has expanded to the southern coast of Japan and to China along the East China Sea. In order to elucidate the growth, biomass and productivity of L. japonica in a subtropical area, we cultivated and examined it in the Uwa Sea, in southwestern Japan over a period of 2 years. The seawater temperature ranged from 13.8 to 26.8 °C in 2001/2002 and from 13.1 to 27.2 °C in 2002/2003. In 2001/2002, the maximum density, maximum mean length and maximum mean wet wt. of L. japonica were 59.7 ± 28.0 ind. 50 cm− 1 (mean ± S.D.), 187.5 ± 82.7 cm (360 cm in the largest individual) and 130.1 ± 94.6 g wet wt., respectively. In 2002/2003, these values were 94.7 ± 22.2 ind. 50 cm− 1, 159.3 ± 74.4 cm (300 cm in the largest individual) and 95.2 ± 69.5 g wet wt., respectively. Thus, the length and weight increased when the density was low (2001/2002), and the length and weight decreased when the density was high (2002/2003). The maximum biomass was estimated to be 7200 ± 3400 g wet wt. 50 cm− 1 in 2001/2002 and 7300 ± 2000 g wet wt. 50 cm− 1 in 2002/2003. Annual production was estimated to be 33.3 kg wet wt. m− 1 year− 1 in 2001/2002 and 34.0 kg wet wt. m− 1 year− 1 in 2002/2003. The present study indicates that the annual production of L. japonica per rope of 1 m at Uwajima Bay, the Uwa Sea corresponded to 1.1-2.2 m2 of that of Hokkaido in their native area. Thus, the present study indicates that L. japonica is highly adaptable because it is able to keep a high level of productivity when grown in water with a high temperature.  相似文献   

12.
The role of nutrient availability in the decay of Typha latifolia and Cladium jamaicense litter and associated microbial responses were studied under controlled experimental conditions. The experimental setup consisted of three 14 m2 mesocosms: (i) an experimentally enriched (N&P) mesocosm containing organic soil, (ii) a mesocosm with organic soil but no external enrichment, and (iii) a mesocosm with no external nutrient inputs and a mineral soil, each equally divided into two areas predominated by T. latifolia and C. jamaicense. Air dried senesced material of each plant species from the three units were placed in litterbags and were introduced back into their respective communities on the soil and water interface. Litter from T. latifolia degraded significantly faster than that of C. jamaicense. The half life of T. latifolia litter averaged approximately 274 days, C. jamaicense litter half life was extrapolated to approximately 377 days. Nutrient enrichment significantly increased the decay rates of T. latifolia, the nutrient effect on C. jamaicense decomposition was less apparent. The microbial biomass carbon in T. latifolia and C. jamaicense litter increased significantly as the litter decomposed. No significant differences between the litter types or amongst mesocosms were found. The relative activities of the extracellular enzymes acid phosphatase and β-glucosidase were significantly (P < 0.001 and P = 0.0284, respectively) affected by litter type and mesocosm over time. Litter associated alkaline phosphatase activity was largest in the mineral mesocosm, followed by the organic control and then organic enriched irrespective of litter type, β-glucosidase activity showed an inverse effect, enriched organic > organic control > mineral. The litter CO2 and CH4 microbial production rates showed a significant litter type and mesocosm effect (P = 0.0003 and 0.001, respectively). T. latifolia litter had larger associated methanogenic and microbial respiration rates than C. jamaicense litter. Nutrient enrichment enhanced both forms of microbial metabolic activities (CO2 and CH4 production). The effect of nutrient enrichment was primarily evident in the initial (3–6 months) period of decay, extracellular enzyme activities and the litter associated microbial metabolic activities showed most response during this decay stage.  相似文献   

13.
Sinojackia xylocarpa is a Chinese endemic species that is extinct in the wild but extant in botanical gardens. Microsatellites were used to investigate the genetic diversity and mating system of this species for future use in a reintroduction program. Ex situ conserved populations of S. xylocarpa maintain intermediate levels of genetic diversity (HE = 0.570–0.640). However, a general and significant heterozygote excess was found, with a mean FIS of −0.103. S. xylocarpa was determined to be predominantly outcrossing (tm = 0.992; ts = 1.092). Population size and genetic diversity were found to be positively correlated (r = 0.991; P = 0.084). Principal coordinate analysis (PCA) suggests that all extant individuals are derived from two source populations. Reintroduction strategies of S. xylocarpa were proposed on the basis of these results.  相似文献   

14.
The collection of biological samples through non-invasive techniques represents one way of monitoring in vivo physiological changes associated with reproductive activity. Such techniques are particularly important for the study of animal species in the wild.The goals of this study were 1) to evaluate fecal progestogen (P), estrogen (E), and androgen (A) by means of radioimmunoassays, in male and female wild boars culled in the Piedmont, Italy area; 2) to compare them with plasmatic concentrations and the animals’ reproductive status; and 3) to assess variations in reproductive seasonality between two populations of wild boars living in a mountainous vs. a plain habitat in Piedmont.The results demonstrate a positive correlation between fecal and plasmatic steroid concentrations (r = 0.46, 0.58, and 0.45 for plasma P4 and P, E2 and E, and T and A; P < 0.05). Moreover, high fecal levels of both P and E (>170 ng/g and >100 pg/g respectively) were found in 70.6% of pregnant sows and in none of the non-pregnant animals, thus supporting the use of this technique for detecting pregnancy status in wild boar.Similar birth patterns were displayed by the mountain and plain populations, but births peaked significantly only in the mountain population, in the spring (46%, P < 0.05, vs. other seasons). A corresponding autumnal peak of plasma testosterone concentrations in males was displayed only by the mountain population (7.4 vs. < 2.0 ng/mL in the other seasons, P < 0.05).The correlation between fecal and plasmatic steroid concentrations obtained in this study supports the applicability of this non-invasive sampling technique for monitoring reproductive status in wild boar, thus enabling a more informed and correct management of the species.  相似文献   

15.
Entomophthoralean fungus Pandora nouryi is an obligate aphid pathogen that enables to produce resting spores (azygospores) for surviving host absence. To explore possible mechanisms involved in the regulation of resting spore formation in vivo, host cohorts consisting of 40-60 nymphs of green peach aphid Myzus persicae produced within 24 h on cabbage leaf discs in petri dishes were exposed to spore showers of P. nouryi at the concentrations (C) from a very few to nearly 2000 conidia/mm2 and then reared for 7-11 days at the regimes of 10-25 °C (T) and 8-16 h daylight (HL) or ambient (17.5 ± 3.1 °C, 13:11 L:D). Aphid mortalities observed from 35-83 cohorts (showered separately) at each regime showed typical sigmoid trend and fit well a general logistic equation (0.79 ? r2 ? 0.88), yielding similar LC50 estimates of 1.7-6.1 conidia/mm2. The proportions (P) of cadavers forming resting spores in the cohorts also fit the same equation (0.73 ? r2 ? 0.85) at all tested regimes except at 10 °C, a low temperature for the host-pathogen interaction. This indicates the dependence of resting spore formation on the spore concentration. The effects of T and HL on P over C were well elucidated by the fitted modified logistic equations = 0.578/{1 + exp[1.710 − (0.136 − 0.0053T)C]} and = 0.534/{1 + exp[1.639 + (0.034 − 0.0053HL)C]} (both r2 = 0.79). Our results highlight that the resting spore formation in vivo of P. nouryi is regulated primarily by the concentration of host-infecting conidia discharged from cadavers and facilitated by lower temperature and longer daylight.  相似文献   

16.
Solution studies on the complexes of the type [Ln(hfaa)3(phen)2] (Ln = La, Pr and Nd) and [Ln(hfaa)3phen] (Ln = Nd, Ho, Er and Yb; hfaa stands for the anion of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione and phen stands for 1,10-phenanthroline) are presented. These complexes are synthesized in high yields by an in situ method in which hfaa, ammonium hydroxide, lanthanide chlorides and phen were allowed to react in 3:3:1:1 molar ratio in ethanol. In the case of neodymium both eight- and ten-coordinate complexes are isolated. The paramagnetic shifts of the methine protons of β-diketone have their sign opposed to those of paramagnetic shifts of phen protons and the shifts are dominated by dipolar interactions. The inter- and intramolecular shift ratios have been calculated and discussed. The 4f-4f absorption spectra of the complexes of Pr, Nd, Ho and Er are analyzed. The eight- and ten-coordinate neodymium complexes display distinctively different band shapes of the 4G5/2,2G7/2 ← 4I9/2 hypersensitive transition. The efficient energy transfer from ligand to Pr(III) is reflected by strong red luminescence of this complex at room temperature.  相似文献   

17.
A case study on Centaurea gymnocarpa Moris & De Not., a narrow endemic species, was carried out by analyzing its morphological, anatomical, and physiological traits in response to natural habitat stress factors under Mediterranean climate conditions. The results underline that the species is particularly adapted to the environment where it naturally grows. At the plant level, the above-ground/below-ground dry mass (1.73 ± 0.60) shows its investment predominately in the above-ground structure with a resulting total leaf area per plant of 1399 ± 94 cm2. The senescent attached leaves at the base of the plant contribute to limit leaf transpiration by shading soil around the plant. Moreover, the dense C. gymnocarpa leaf pubescence, leaf rolling, the relatively high leaf mass area (LMA = 12.3 ± 1.3 mg cm−2) and leaf tissue density (LTD = 427 ± 44 mg cm−3) contribute to limit leaf transpiration, also postponing leaf death under dry conditions. At the physiological level, a relatively low respiration/photosynthesis ratio (R/PN) in spring results from high R [2.26 ± 0.59 μmol (CO2) m−2 s−1] and PN [12.3 ± 1.5 μmol (CO2) m−2 s−1]. The high photosynthetic nitrogen use efficiency [PNUE = 15.5 ± 0.4 μmol (CO2) g−1 (N) s−1] shows the large amount of nitrogen (N) invested in the photosynthetic machinery of new leaves, associated to a high chlorophyll content (Chl = 35 ± 5 SPAD units). On the contrary, the highest R/PN ratio (1.75 ± 0.19) in summer is due to a significant PN decrease and increase of R in response to drought. The low PNUE [1.5 ± 0.2 μmol (CO2) g−1 (N) s−1] in this season is indicative of a greater N investment in leaf cell walls which may contribute to limit transpiration. On the contrary, the low R/PN ratio (0.05 ± 0.02) in winter is resulting from the limited enzyme activity of the respiratory apparatus [R = 0.23 ± 0.08 μmol (CO2) m−2 s−1] while the low PNUE [3.5 ± 0.2 μmol (CO2) g−1 (N) s−1] suggests that low temperatures additionally limit plant production. The experiment of the imposed water stress confirms that the C. gymnocarpa growth capability is in conformity with the severe conditions of its natural habitat, likewise as it may be the case with others narrow endemic species that have occupied niches with similar extreme conditions.  相似文献   

18.
The effects of temperature, water level and burial depth on seed germination of two submerged species, Myriophyllum spicatum and Potamogeton malaianus, were investigated under controlled laboratory conditions. There was no significant difference in final germination of M. spicatum among water level treatments, but P. malaianus germinations at 1 cm and 12 cm water levels were better than at 0 cm water level at temperatures of 20 °C and 30 °C. Little to no germination was observed for either species at the temperature of 10 °C. At 15 °C, however, germination increased significantly to 66.3-70.6% for M. spicatum and to 29.4-48.1% for P. malaianus under all three water level treatments. Increased temperature from 15 °C to 30 °C had no significant effect on the final germination of M. spicatum except at the 1 cm water level, but enhanced significantly the germination of P. malaianus. Analysis of the mean time to germination revealed that M. spicatum was a faster germinator relative to P. malaianus. The two species’ germination differed markedly in response to burial depth. Germination percentage of M. spicatum was 71.3% at 0 cm burial depth, but decreased to 5.0% and to 2.5% at depths of 1 cm and 2 cm, respectively; whereas germination percentages of P. malaianus were 40.0%, 23.8%, 12.5%, 7.5% and 1.3% at depths of 0 cm, 1 cm, 2 cm, 3 cm and 5 cm, respectively. We concluded that the two species respond differently to germination strategies. The findings provided further insight into how germination strategy contributes to the seed bank formation and species invasion.  相似文献   

19.
Structural, magnetic and spectroscopic data of a new trinuclear copper(II) complex with the ligand aspartame (apm) are described. [Cu(apm)2Cu(μ-N,O:O′-apm)2(H2O)Cu(apm)2(H2O)] · 5H2O crystallizes in the triclinic system, space group P1 (#1) with a = 7.3300(1) Å, b = 15.6840(1) Å, c = 21.5280(1) Å, α = 93.02(1)°, β = 93.21(1)°, γ = 92.66(1)° and Z = 1. Aspartame coordinates to Cu(II) through the carboxylate and β-amino groups. The carboxylate groups of the two central ligands act as bidentate bridges in a syn-anti conformation while the carboxylate groups of the four peripheral ligands are monodentate in a syn conformation. The central copper ion is in a distorted square pyramidal geometry with the apical position being occupied by one oxygen atom of the water molecule. The two terminal copper(II) atoms are coordinated to the ligands in the same position but their coordination sphere differs from each other due to the fact that one copper atom has a water molecule in an apical position leading to an octahedral coordination sphere while the other copper atom is exclusively coordinated to aspartame ligands forming a distorted square pyramidal coordination sphere. Thermal analysis is consistent with the X-ray structure. EPR spectra and CV curves indicate a rupture of the trinuclear framework when this complex is dissolved in ethanol or DMF, forming a mononuclear species, with a tetragonal structure.  相似文献   

20.
Xu BC  Xu WZ  Huang J  Shan L  Li FM 《Plant science》2011,181(6):644-651
A better understanding of the growth and interspecific competition of native dominant species under water stress should aid in prediction of succession in plant communities. In addition, such research would guide the selection of appropriate conservation and agricultural utilization of plants in semiarid environments that have not been very well characterized. Biomass production and allocation, relative competitive ability and water use efficiency of one C4 herbaceous grass (Bothriochloa ischaemum) and one C3 leguminous subshrub (Lespedeza davurica), both important species from the semiarid Loess Plateau of China, were investigated in a pot-cultivation experiment. The experiment was conducted using a replacement series design in which B. ischaemum and L. davurica were grown with twelve plants per pot, in seven combinations of the two species (12:0, 10:2, 8:4, 6:6, 4:8, 2:10, and 0:12). Three levels of water treatments included sufficient water supply (HW), moderate water stress (MW) and severe water stress (LW). These treatments were applied after seedling establishment and remained until the end of the experiment. Biomass production and its partitioning, and transpiration water use efficiency (TWUE) were determined at the end of the experiment. Interspecific competitive indices (competitive ratio (CR), aggressiveness (A) and relative yield total (RYT)) were calculated from the dry weight for shoots, roots and total biomass. Water stress decreased biomass production of both species in monoculture and mixture. The growth of L. davurica was restrained in their mixtures for each water treatment. L. davurica had significantly (P < 0.05) greater root:shoot allocation than B. ischaemum for each water treatment and proportion within the replacement series. Aggressiveness (A) values for B. ischaemum with respect to L. davurica were negative only at the proportions of B. ischaemum to L. davurica being 8:4 and 10:2 in LW treatment. B. ischaemum had a significantly (P < 0.05) higher CR value under each water treatment, and water stress considerably reduced its relative CR while increased that of L. davurica. RYT values of the two species indicated some degree of resource complimentarity under both water sufficient and deficit conditions. The results suggest that it is advantageous for growing the two species together to maximize biomass production, and the suggested ratio was 10:2 of B. ischaemum to L. davurica because of significantly higher (P < 0.05) RYT and TWUE under low water availability condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号