首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient method of regeneration for antidiabetic plant (Stevia rebaudiana) has been established for healthy biomass and main steviol glycosides (SGs) production, using different PGRs and agar concentrations. Higher callus induction (93.3%) was recorded when leaf explants were placed on an MS medium supplemented with 3.5 gL−1 agar and 2.0 mgL−1 2,4-D. The addition of 7.0 gL−1 agar and BA (1.0, 2.0 and 4.0 mgL−1) significantly (< 0.01) influences shooting response (100%). A maximum mean shoot length (13.03 cm) and 28 shoots per explant were observed on a medium containing 1.0 mgL−1 BA. However, the maximum number of leaves (132.67) was encouraged by the addition of BA (1.0 mgL−1) and Kin (1.0 mgL−1). Lower agar (3.5 gL−1), IAA (2.0 mgL−1), and NAA (2.0 mgL−1) concentrations significantly influence the rooting percent (100%), the mean root length (2.9 cm), and the number of roots per plantlet (26.3). These plantlets were successfully acclimatized in the soil. The BA (3.0 mgL−1) in combination with Kin (3.0 mgL−1) and 3.5 gL−1 agar increases dulcoside-A content (Dul-A; 71.8 μg/g-DW) in shoots compared to control (50.81 μg/g-DW). Similar PGRs with 7.0 gL−1 significantly increases the production of steviosides (Stev. 82.48 μg/g-DW). A higher rebaudioside-A content (Reb-A; 12.35 μg/g-DW) was observed in shoots that underwent the addition of BA (1.0 mgL−1) and 7.0 gL−1 agar than in control (07.39 μg/g-DW). Hereby, we developed an efficient and cost-effective method for regeneration and major SGs production, which could be helpful for future studies on this species.  相似文献   

2.
The purpose of this study was to develop a protocol to induce high frequency of callus and subsequent plantlet regeneration for Pseudarthria viscida; an important medicinal plant. The cotyledonary node and young leaf pieces (1 × 0.5 cm, length × breadth) were used as explants for callus induction and subsequent shoot regeneration and adventitious roots induction from the shoots. The best results were achieved on the following media: (1) 96 % callus induction from cotyledonary node explants on MS medium supplemented with 1.5 mgl−1 2, 4 dichlorophenoxyacetic acid (2, 4-D) and 0.5 mgl−1 1-naphthalene acetic acid (NAA), (2) 97 % shoot regeneration from cotyledonary node derived calli with an average of 44.9 shoots per explant on MS medium fortified with 3.0 mgl−1 N6-benzylaminopurine (BA) and 1 mgl−1 NAA,37 (3) 98 % rooting with an average number of 3.3 roots per shoot on MS medium containing indole-3-butyric acid (IBA) or NAA (0.5–4 mgl−1) after 45 days. The plantlets were transferred to the field after acclimatization. Of the 40 plantlets transplanted to the soil, 29 survived (72.5 %).  相似文献   

3.
Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na+ and Cl in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψw) decreased from an average value of approximately −1.0 MPa, measured on control plants and S10, to −1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g−1 fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.  相似文献   

4.
Herbaceous species possess several mechanisms to compensate for tissue loss. For clonal herbaceous species, clonal integration may be an additional mechanism. This may especially hold true when tissue loss is very high, because other compensatory mechanisms may be insufficient. On inland dunes in northern China, we subjected Bromus ircutensis and Psammochloa villosa ramets within 0.5 m×0.5 m plots to three clipping treatments, i.e., no clipping, moderate (50% shoot removal) and heavy clipping (90% shoot removal), and kept rhizomes at the plot edges connected or disconnected. Moderate clipping did not reduce ramet, leaf or biomass density of either species. Under moderate clipping, rhizome connection significantly improved the performance of Psammochloa, but not that of Bromus. Heavy clipping reduced ramet, leaf and biomass density in the disconnected plots of both species, but such negative effects were negated or greatly ameliorated when the rhizomes were connected. Therefore, clonal integration contributed greatly to the compensatory growth of both species. The results suggest that clonal integration is an additional compensatory mechanism for clonal plants and may be important for their long-term persistence in the heavily grazed regions in northern China.  相似文献   

5.
Two 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) genes have been cloned from RNA isolated from leaf tissue of apple (Malus domestica cv. Royal Gala). The genes, designated MD-ACO2 (with an ORF of 990 bp) and MD-ACO3 (966 bp) have been compared with a previously cloned gene of apple, MD-ACO1 (with an ORF of 942 bp). MD-ACO1 and MD-ACO2 share a close nucleotide sequence identity of 93.9% in the ORF but diverge in the 3′ untranslated regions (3′-UTR) (69.5%). In contrast, MD-ACO3 shares a lower sequence identity with both MD-ACO1 (78.5%) and MD-ACO2 (77.8%) in the ORF, and 68.4% (MD-ACO1) and 71% (MD-ACO2) in the 3′-UTR. Southern analysis confirmed that MD-ACO3 is encoded by a distinct gene, but the distinction between MD-ACO1 and MD-ACO2 is not as definitive. Gene expression analysis has shown that MD-ACO1 is restricted to fruit tissues, with optimal expression in ripening fruit, MD-ACO2 expression occurs more predominantly in younger fruit tissue, with some expression in young leaf tissue, while MD-ACO3 is expressed predominantly in young and mature leaf tissue, with less expression in young fruit tissue and least expression in ripening fruit. Protein accumulation studies using western analysis with specific antibodies raised to recombinant MD-ACO1 and MD-ACO3 produced in E. coli confirmed the accumulation of MD-ACO1 in mature fruit, and an absence of accumulation in leaf tissue. In contrast, MD-ACO3 accumulation occurred in younger leaf tissue, and in younger fruit tissue. Further, the expression of MD-ACO3 and accumulation of MD-ACO3 in leaf tissue is linked to fruit longevity. Analysis of the kinetic properties of the three apple ACOs using recombinant enzymes produced in E. coli revealed apparent Michaelis constants (Km) of 89.39 μM (MD-ACO1), 401.03 μM (MD-ACO2) and 244.5 μM (MD-ACO3) for the substrate ACC, catalytic constants (Kcat) of 6.6 × 10−2 (MD-ACO1), 3.44 × 10−2 (Md-ACO2) and 9.14 × 10−2 (MD-ACO3) and Kcat/Km (μM s−1) values of 7.38 × 10−4 μM s−1 (MD-ACO1), 0.86 × 10−4 M s−1 (MD-ACO2) and 3.8 × 10−4 μM s−1 (MD-ACO3). These results show that MD-ACO1, MD-ACO2 and MD-ACO3 are differentially expressed in apple fruit and leaf tissue, an expression pattern that is supported by some variation in kinetic properties.  相似文献   

6.
Sphagna are vulnerable to enhanced nitrogen (N) deposition. This article reports how the green (shade, under Calluna) and red (open grown) Sphagnum capillifolium respond to ammonium and nitrate additions of 56 kg N ha−1 y−1 over the background of 8-10 kg N ha−1 y−1 on an ombrotrophic bog in the Scottish Borders after seven years. Samples and measurements were made during a range of hydrated and desiccated conditions in the summer of 2009. Both ammonium and nitrate increased moss N concentration, but while ammonium decreased cross-sectional area of leaf hyaline cells and the leaf hyaline/chlorophyllose cell area ratio, nitrate increased both of them and capitulum pH. The changes in leaf morphology have not previously been reported to our knowledge. Especially the red S. capillifolium was affected by ammonium with significant changes in shoot N concentration (+71%) and the cross-sectional area of leaf chlorophyllose cells (+67%), and reductions in shoot dry weight (−30%) and fresh weight (−42%), the cross-sectional area of leaf hyaline cells (−24%), the leaf hyaline/chlorophyllose cell area ratio (−54%), as well as in chlorophyll fluorescence (measured as Fv/Fm) of desiccated capitulum (−65%) (all p < 0.05). These observations show that N deposition may affect moss physiology also through changes in leaf anatomy and morphology. The results also highlight potential sampling issues and causes of variability in N responses when collecting variably pigmented Sphagna.  相似文献   

7.
Thirty-six programs have been set up to revegetate the degraded lake wetlands in east China since 2002. Most projects however faced deficiency of submerged macrophyte propagules. To solve the problem, alternative seedling sources must be found besides traditional field collection. This paper deals with an in vitro propagation protocol for two popularly used submerged macrophytes, Myriophyllum spicatum L. and Potamogeton crispus L. Full strength Murashige and Skoog-based liquid media (MS) plus 3% sucrose in addition to 0–2.0 mg l−1 6-benzylaminopurine (BA) and 0–1.0 mg l−1 indoleacetic acid (IAA) were tried for shoot regeneration. Meanwhile, full, half or quarter strength MS in addition to 0, 0.1 or 0.2 mg l−1 naphthaleneacetic acid (NAA) were tested for root induction, respectively. Results indicated that both species had the ability of regeneration from stem fragments in MS without further regulators. However, the addition of 2.0 mg l−1 BA with 0.2 or 1.0 mg l−1 IAA in MS drastically stimulated the regeneration efficiency of M. spicatum, while the addition of 2.0 mg l−1 BA with 0.2 or 0.5 mg l−1 IAA in MS significantly stimulated that of P. crispus. For root induction, full strength MS in combination with 0.1or 0.2 mg l−1 NAA was preferred by M. spicatum, and the same MS without or with 0.1 mg l−1 NAA was preferred by P. crispus. Seedlings of each species produced from tissue culture room had a 100% survival rate on clay, sandy loam or their mixture (1:1) in an artificial pond, and phenotypic plasticity was exhibited when the nutrient levels varied among the three types of sediments. This acclimation of seedlings helped develop the shoot and root systems, which ensured seedling quality and facilitated the transplantation. Our study has established an effective protocol to produce high quality seedlings for lake revegetation programs at a larger scale. Since the two species we tested represent different regeneration performances in nature but shared similar in vitro propagation conditions, this study has indicated a potentially wide use of the common media for preparing seedlings of other submerged macrophytes.  相似文献   

8.
Current knowledge about the abundance, growth, and primary production of the seagrass Cymodocea nodosa (Ucria) Ascherson is biased towards shallow (depth <3 m) meadows although this species also forms extensive meadows at larger depths along the coastlines. The biomass and primary production of a C. nodosa meadow located at a depth of 8–11 m was estimated at the time of maximum annual vegetative development (summer) using reconstruction techniques, and compared with those available from shallow meadows of this species. A depth-referenced data base of values at the time of maximum annual development was compiled to that end. The vegetative development of C. nodosa at 8–11 m depth was not different from that achieved by shallow (depth <3 m) meadows of this species. Only shoot density, which decreased from 1637 to 605 shoots m−2, and the annual rate of elongation of the horizontal rhizome, which increased from 23 to 71 cm apex−1 year−1, were different as depth increased from <3 to 8–11 m. Depth was a poor predictor of the vegetative development and primary production of C. nodosa. The biomass of rhizomes and roots decreased with depth (g DW m−2 = 480 (±53, S.E.) − 32 (±15, S.E.) depth (in m); R2 = 0.12, F = 4.65, d.f. = 35, P = 0.0381) which made total biomass of the meadow to show a trend of decrease with depth but the variance of biomass data explained by depth was low. The annual rate of elongation of the horizontal rhizome showed a significant positive relationship with depth (cm apex−1 year−1 = 18 (±5.1, S.E.) + 5.0 (±1.33, S.E.) depth (in m); R2 = 0.50, F = 14.07, d.f. = 14, P = 0.0021). As shoot size and growth did not change significantly with depth, the reduction of shoot density should drive any changes of biomass and productivity of C. nodosa as depth increases. The processes by which this reduction of C. nodosa abundance with depth occur remain to be elucidated.  相似文献   

9.
To examine the synergism of high temperature and sulfide on two dominant tropical seagrass species, a large-scale mesocosm experiment was conducted in which sulfide accumulation rates (SAR) were increased by adding labile carbon (glucose) to intact seagrass sediment cores across a range of temperatures. During the initial 10 d of the 38 d experiment, porewater SAR in cores increased 2- to 3-fold from 44 and 136 μmol L− 1 d− 1 at 28-29 °C to 80 and 308 μmol L− 1 d− 1 at 34-35 °C in Halodule wrightii and Thalassia testudinum cores, respectively. Labile C additions to the sediment resulted in SAR of 443 and 601 μmol L− 1 d− 1 at 28-29 °C and 758 to 1,557 μmol L− 1 d− 1 at 34-35 °C in H. wrightii and T. testudinum cores, respectively. Both T. testudinum and H. wrightii were highly thermal tolerant, demonstrating their tropical affinities and potential to adapt to high temperatures. While plants survived the 38 d temperature treatments, there was a clear thermal threshold above 33 °C where T. testudinum growth declined and leaf quantum efficiencies (Fv/Fm) fell below 0.7. At this threshold temperature, H. wrightii maintained shoot densities and leaf quantum efficiencies. Although H. wrightii showed a greater tolerance to high temperature, T. testudinum had a greater capacity to sustain biomass and short shoots under thermal stress with labile C enrichment, regardless of the fact that sulfide levels in the T. testudinum cores were 2 times higher than in the H. wrightii cores. Tropical seagrass tolerance to elevated temperatures, predicted in the future with global warming, should be considered in the context of the sediment-plant complex which incorporates the synergism of plant physiological responses and shifts in sulfur biogeochemistry leading to increased plant exposure to sulfides, a known toxin.  相似文献   

10.
Floating Pennywort (Hydrocotyle ranunculoides L.fil.), a native to North America and naturalized in Central and South America, is an invasive aquatic weed in western Europe and several other regions worldwide. H. ranunculoides settles primarily in stagnant to slow-flowing waters (e.g. ditches, canals, rivers, lakes and ponds). The species prefers sunny and nutrient-rich sites and forms dense interwoven mats, which can quickly cover the surface of infested waters. In this study, the effect of three different water levels on growth of Floating Pennywort was investigated. Plants were cultivated on high-nutrient soils under waterlogged, semi-drained and drained conditions. Highest relative growth rates (RGR) of 0.097±0.004 g g−1 dw d−1 were reached under waterlogged conditions. This was significantly higher than RGR of plants cultivated semi-drained and drained. Floating Pennywort showed some phenological adaptations to drained soil conditions, including significant differences in the relative amounts of leaf, petiole and shoot biomass, whilst the relative amount of root biomass was not significantly influenced by the water level. Furthermore, Floating Pennywort reached under drained conditions lower relative water contents (RWC) of leaves, petioles and shoots, a significant shorter length of internodes, a significant lower extent of shoot porosity (POR), a lower chlorophyll content and an increased Chla:Chlb ratio. In addition, maximum gas exchange of drained cultivated plants is significantly lower, due to strongly decreased leaf conductance under reduced water availability. Overall, H. ranunculoides showed ability to grow under different water levels, but performed best under waterlogged conditions.  相似文献   

11.
Patch dynamics of the Mediterranean slow-growing seagrass Posidonia oceanica was studied in two shallow sites (3–10 m) of the Balearic Archipelago (Spain) through repeated censuses (1–2 year−1). In the sheltered site of Es Port Bay (Cabrera Island), initial patch density (October 2001) was low: 0.05 patches m−2, and the patch size (number of shoots) distribution was bimodal: most of the patches had less than 6 shoots or between 20 and 50 shoots. Mean patch recruitment in Es Port Bay (0.006 ± 0.002 patches m−2 year−1) exceeded mean patch loss (0.001 ± 0.001 patches m−2 year−1), yielding positive net patch recruitment (0.004 ± 0.003 patches m−2 year−1) and a slightly increased patch density 3 years later (July 2004, 0.06 patches m−2). In the exposed site of S’Estanyol, the initial patch density was higher (1.38 patches m−2, August 2003), and patch size frequency decreased exponentially with size. Patch recruitment (0.26 patches m−2 year−1) and loss (0.24 patches m−2 year−1) were high, yielding a slightly increased patch density in the area 1 year later (October 2004, 1.40 patches m−2). Most recruited patches consisted of rooting vegetative fragments of 1–2 shoots. Seedling recruitment was observed in Summer 2004 at both sites. Episodic, seedling recruitment comprised 30% and 25% of total patch recruitment in Es Port Bay and S’Estanyol, respectively. Patch survival increased with patch size and no direct removal was observed among patches of 5 shoots or more. Most patches grew along the study, shifting patch distribution towards larger sizes. Within the size range studied (1–150 shoots), absolute shoot recruitment (shoots year−1) increased linearly with patch size (R2 = 0.64, p < 4 × 10−5, N = 125), while specific shoot recruitment was constant (about 0.25 ± 0.05 year−1), although its variance was large for small patches. Given the slow growth rate and the high survival of patches with 5 or more shoots, even the low patch recruitment rates reported here could play a significant role in the colonisation process of P. oceanica.  相似文献   

12.
The results of 15 years of monitoring of Posidonia oceanica in the “Cinque Terre” Marine Protected Area (NW Mediterranean) are presented. Seasonal data on meadow characteristics (cover and shoot density), plant phenology (leaf number, leaf length and width, leaf brown portion, undamaged leaves), lepidochronology, leaf epiphyte cover and herbivore pressure collected from three stations at 5, 10 and 17 m depth were compared. Time-series analyses showed both medium-term (5 < years) and long-term cycles (from 5 to more than 20 years). The comparison of annual cycles with sea surface temperatures (SST) and rainfall showed correlations that differed in relation to depth and, in the case of epiphytes, with each side (internal and external) of the leaf blade. Meadow parameters (visual cover, shoot percent cover) and plant parameters (leaf number, number of undamaged leaves, number of scales shoot−1) showed a positive trend in accordance with the rise of air and sea surface temperature recorded over these last decades. Shoot density and leaf width showed exceptions. Leaf length, leaf brown portion length and the number of undamaged leaves shoot−1 showed positive or negative long-term trends, whose variability could not be related to climate data alone. The two major groups of epiphytes (encrusting algae and the bryozoan Electra posidoniae) showed negative trends. Grazing variability could be explained only partially by climate parameters. Epiphyte cover was found to be related to the NAO index.In conclusion, data showed that the effects of the climate change in terms of both sea surface temperature rising and rainfall decreasing may affect the growth cycles of P. oceanica on two levels: on a decadal level, with positive or negative trends in meadow and plant characteristics and in epiphyte cover; on yearly and seasonal levels, influencing endogenous plant growth rhythms, as in the case of leaf production cycle.  相似文献   

13.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

14.
The objective of this research was to develop an efficient protocol for shoot regeneration from leaf segments of the Chrysanthemum cv. Vivid Scarlet by examining the effects of plant growth regulators, dark incubation period, gelling agents, and silver nitrate. The highest number of shoots per explant (12.3) was regenerated from leaf explants cultured on Murashige and Skoog (MS) medium supplemented with a combination of 1 mg L−1 of 6-benzyladenine (BA) and 2 mg L−1 of α-naphthaleneacetic acid (NAA) under light conditions without any initial dark period. Gelrite was the most effective gelling agent for shoot regeneration among those tested, whereas the presence of silver nitrate distinctly inhibited shoot regeneration. Superior plant growth and rooting was observed on a hormone-free MS medium solidified with Gelrite. Flow cytometry analysis revealed no ploidy variation between the regenerated plants and the mother plant grown under greenhouse conditions. The established protocol was applicable to shoot regeneration for four out of six cultivars tested. This research will facilitate the genetic transformation and micropropagation of Chrysanthemum cultivars.  相似文献   

15.
The physiological parameters of microcuttings, namely leaf area, weight (wt) and position on the stock shoot, had significant effects on root vigour, microshoot growth and incidence of shoot tip necrosis (STN) in cultures of grape (Vitis vinifera L.) ‘Arka Neelamani’. Single-node leafy cuttings cultured in MS medium containing 1 μM IAA and 0.1 μM GA3 generally rooted first and subsequently sprouted into a single shoot. Small leafed cuttings exhibited slow root emergence, poor quality roots, early sprouting and weak shoot growth. Large leafed cuttings on the other hand, showed early rooting, vigorous roots, delayed sprouting and healthier shoots. Significant correlations were observed between fresh root wt per plantlet at 1 month in culture and wt of lamina, total wt and leaf area of the cuttings in that order. A significant correlation also existed between wt of roots and height or wt of the sprout that developed. The study suggests that the weight or area of the leaf governed the root growth in a microcutting. STN was observed in some plantlets particularly those derived from large leafed cuttings. Such cuttings showed vigorous roots and delayed but fast sprout growth that ended in STN. Plantlets showing STN had less Ca++ and Mg++ in the shoot tissue than in the shoots of normal plantlets while the roots showed similar Ca++ or higher Mg++ contents. Both had comparable amounts of cytokinins in shoot and root tissues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
This study was carried out to investigate the in vitro competition in tissue culture of three flax (Linum usitatissimum L.) cultivars using different distances among hypocotyl explants cultured. Hypocotyl fresh and dry masses, shoot regeneration percentage, shoot number per hypocotyl, regenerated shoot length and total chlorophyll content were examined during shoot regeneration, while plantlet height, number of roots and length of roots were recorded during rooting. With decreasing distance among explants we observed increased shoot regeneration and rooting till a certain point from where stress initiated and significant decreases in all parameters observed. Explants cultured at distance 1.0 cm were found to be at their optimum.  相似文献   

17.
Chromium (Cr), as a mutagenic agent in plants, has received less attention than other metal pollutants. To understand if Cr induces microsatellite instability (MSI), Pisum sativum seedlings were exposed for 28 days to different concentrations of Cr(VI) up to 2000 mg L−1, and the genetic instability of ten microsatellites (SSRs) was analyzed. In plants exposed to Cr(VI) up to 1000 mg  L−1, MSI was never observed. However, roots exposed to 2000 mg L−1 displayed MSI in two of the loci analyzed, corresponding to a mutation rate of 8.3%. SSR2 (inserted in the locus for plastid photosystem I 24 kDa light harvesting protein) and SSR6 (inserted in the locus for P. sativum glutamine synthetase) from Cr(VI)-treated roots presented alleles with, respectively, less 6 bp and more 3 bp than the corresponding controls. This report demonstrates that: (a) SSRs technique is sensitive to detect Cr-induced mutagenicity in plants, being Cr-induced-MSI dose and organ dependent (roots are more sensitive); (b) two Cr-sensitive loci are related with thylakoid photophosphorylation and with glutamine synthetase, respectively; (c) despite MSI is induced by Cr(VI), it only occurs in plants exposed to concentrations higher than 1000 mg L−1 (values rarely found in real scenarios). Considering these data, we also discuss the known functional changes induced by Cr(VI) in photosynthesis and in glutamine synthetase activity.  相似文献   

18.
Three Algerian populations of female Pistacia atlantica shrubs were investigated in order to check whether their terpenoid contents and morpho-anatomical parameters may characterize the infraspecific variability. The populations were sampled along a gradient of increasing aridity from the Atlas mountains into the northwestern Central Sahara.As evidenced by Scanning Electron Microscopy, tufted hairs could be found only on seedling leaves from the low aridity site as a population-specific trait preserved also in culture. Under common garden cultivation seedlings of the high aridity site showed a three times higher density of glandular trichomes compared to the low aridity site. Increased aridity resulted also in reduction of leaf sizes while their thickness increased. Palisade parenchyma thickness also increases with aridity, being the best variable that discriminates the three populations of P. atlantica.Analysis of terpenoids from the leaves carried out by GC-MS reveals the presence of 65 compounds. The major compounds identified were spathulenol (23 μg g−1 dw), α-pinene (10 μg g−1 dw), verbenone (7 μg g−1 dw) and β-pinene (6 μg g−1 dw) in leaves from the low aridity site; spathulenol (73 μg g−1 dw), α-pinene (25 μg g−1 dw), β-pinene (18 μg g−1 dw) and γ-amorphene (16 μg g−1 dw) in those from medium aridity and spathulenol (114 μg g−1 dw), α-pinene (49 μg g−1 dw), germacrene D (29 μg g−1 dw) and camphene (23 μg g−1 dw) in leaves from the high aridity site. Terpene concentrations increased with the degree of aridity: the highest mean concentration of monoterpenes (136 μg g−1 dw), sesquiterpenes (290 μg g−1 dw) and total terpenes (427 μg g−1 dw) were observed in the highest arid site and are, respectively, 3-, 5- and 4-fold higher compared to the lower arid site. Spathulenol and α-pinene can be taken as chemical markers of aridity. Drought discriminating compounds in low, but detectable concentrations are δ-cadinene and β-copaene. The functional roles of the terpenoids found in P. atlantica leaves and principles of their biosynthesis are discussed with emphasis on the mechanisms of plant resistance to drought conditions.  相似文献   

19.
Hairy roots of Plumbago indica were established at high frequency (90 %) by infecting leaf explants with Agrobacterium rhizogenes strain ATCC 15834. The axenic root cultures were established under darkness in hormone-free liquid Murashige and Skoog medium containing 3 % sucrose. The highest plumbagin content was found to accumulate in roots at their exponential phase of growth. A low pH (4.6) and a low concentration of sucrose (1 %) were beneficial for root growth in darkness, while pH 5.6 and 3 % sucrose under continuous irradiance enhanced plumbagin accumulation in roots up to 7.8 mg g−1(d.m.). Direct shoot regeneration from hairy root culture was also achieved under continuous irradiance, thus indicated an easy way of obtaining transformed P. indica plants.  相似文献   

20.
Lee EJ  Moh SH  Paek KY 《Bioresource technology》2011,102(14):7165-7170
This study deals with the effects of initial inoculum density and aeration volume on biomass and bioactive compound production in adventitious roots of Eleutherococcus koreanum Nakai in bulb-type bubble bioreactors (3-L capacity). While the fresh and dry weights of the roots increased with increasing inoculum density, the highest percentage dry weight and accumulation of total target compounds (eleutheroside B and E, chlorogenic acid, total phenolics, and flavonoids) were noted at an inoculum density of 5.0 g L−1. Poor aeration volume (0.05 vvm) stunted root growth, and high aeration volume (0.4 vvm) caused physiological disorders. Moreover, an inoculum density of 5.0 g L−1 and an aeration volume of 0.1 vvm resulted in the highest concentration of total target compounds and least root death. Such optimization of culture conditions will be beneficial for the large-scale production of E. koreanum biomass and bioactive compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号