首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expressed sequence tags (ESTs) currently encompass more entries in the public databases than any other form of sequence data. Thus, EST data sets provide a vast resource for gene identification and expression profiling. We have mapped the complete set of 176,915 publicly available Arabidopsis EST sequences onto the Arabidopsis genome using GeneSeqer, a spliced alignment program incorporating sequence similarity and splice site scoring. About 96% of the available ESTs could be properly aligned with a genomic locus, with the remaining ESTs deriving from organelle genomes and non-Arabidopsis sources or displaying insufficient sequence quality for alignment. The mapping provides verified sets of EST clusters for evaluation of EST clustering programs. Analysis of the spliced alignments suggests corrections to current gene structure annotation and provides examples of alternative and non-canonical pre-mRNA splicing. All results of this study were parsed into a database and are accessible via a flexible Web interface at http://www.plantgdb.org/AtGDB/.  相似文献   

2.
A Web-based design center for vector-based siRNA and siRNA cassette   总被引:4,自引:0,他引:4  
  相似文献   

3.
Comparative sequence analysis is a powerful approach to identify functional elements in genomic sequences. Herein, we describe AGenDA (Alignment-based GENe Detection Algorithm), a novel method for gene prediction that is based on long-range alignment of syntenic regions in eukaryotic genome sequences. Local sequence homologies identified by the DIALIGN program are searched for conserved splice signals to define potential protein-coding exons; these candidate exons are then used to assemble complete gene structures. The performance of our method was tested on a set of 105 human-mouse sequence pairs. These test runs showed that sensitivity and specificity of AGenDA are comparable with the best gene- prediction program that is currently available. However, since our method is based on a completely different type of input information, it can detect genes that are not detectable by standard methods and vice versa. Thus, our approach seems to be a useful addition to existing gene-prediction programs. Availability: DIALIGN is available through the Bielefeld Bioinformatics Server (BiBiServ) at http://bibiserv.techfak.uni-bielefeld.de/dialign/ The gene-prediction program AGenDA described in this paper will be available through the BiBiServ or MIPS web server at http://mips.gsf.de.  相似文献   

4.
MOTIVATION: Accurate gene structure annotation is a challenging computational problem in genomics. The best results are achieved with spliced alignment of full-length cDNAs or multiple expressed sequence tags (ESTs) with sufficient overlap to cover the entire gene. For most species, cDNA and EST collections are far from comprehensive. We sought to overcome this bottleneck by exploring the possibility of using combined EST resources from fairly diverged species that still share a common gene space. Previous spliced alignment tools were found inadequate for this task because they rely on very high sequence similarity between the ESTs and the genomic DNA. RESULTS: We have developed a computer program, GeneSeqer, which is capable of aligning thousands of ESTs with a long genomic sequence in a reasonable amount of time. The algorithm is uniquely designed to tolerate a high percentage of mismatches and insertions or deletions in the EST relative to the genomic template. This feature allows use of non-cognate ESTs for gene structure prediction, including ESTs derived from duplicated genes and homologous genes from related species. The increased gene prediction sensitivity results in part from novel splice site prediction models that are also available as a stand-alone splice site prediction tool. We assessed GeneSeqer performance relative to a standard Arabidopsis thaliana gene set and demonstrate its utility for plant genome annotation. In particular, we propose that this method provides a timely tool for the annotation of the rice genome, using abundant ESTs from other cereals and plants. AVAILABILITY: The source code is available for download at http://bioinformatics.iastate.edu/bioinformatics2go/gs/download.html. Web servers for Arabidopsis and other plant species are accessible at http://www.plantgdb.org/cgi-bin/AtGeneSeqer.cgi and http://www.plantgdb.org/cgi-bin/GeneSeqer.cgi, respectively. For non-plant species, use http://bioinformatics.iastate.edu/cgi-bin/gs.cgi. The splice site prediction tool (SplicePredictor) is distributed with the GeneSeqer code. A SplicePredictor web server is available at http://bioinformatics.iastate.edu/cgi-bin/sp.cgi  相似文献   

5.
GEPIS--quantitative gene expression profiling in normal and cancer tissues   总被引:1,自引:0,他引:1  
MOTIVATION: Expression profiling in diverse tissues is fundamental to understanding gene function as well as therapeutic target identification. The vast collection of expressed sequence tags (ESTs) and the associated tissue source information provides an attractive opportunity for studying gene expression. RESULTS: To facilitate EST-based expression analysis, we developed GEPIS (gene expression profiling in silico), a tool that integrates EST and tissue source information to compute gene expression patterns in a large panel of normal and tumor samples. We found EST-based expression patterns to be consistent with published papers as well as our own experimental results. We also built a GEPIS Regional Atlas that depicts expression characteristics of all genes in a selected genomic region. This program can be adapted for large-scale screening for genes with desirable expression patterns, as illustrated by our large-scale mining for tissue- and tumor-specific genes. AVAILABILITY: The email server version of the GEPIS application is freely available at http://share.gene.com/share/gepis. An interactive version of GEPIS will soon be freely available at http://www.cgl.ucsf.edu/Research/genentech/gepis/. The source code, modules, data and gene lists can be downloaded at http://share.gene.com/share/gepis.  相似文献   

6.
A database (SpliceDB) of known mammalian splice site sequences has been developed. We extracted 43 337 splice pairs from mammalian divisions of the gene-centered Infogene database, including sites from incomplete or alternatively spliced genes. Known EST sequences supported 22 815 of them. After discarding sequences with putative errors and ambiguous location of splice junctions the verified dataset includes 22 489 entries. Of these, 98.71% contain canonical GT-AG junctions (22 199 entries) and 0.56% have non-canonical GC-AG splice site pairs. The remainder (0.73%) occurs in a lot of small groups (with a maximum size of 0.05%). We especially studied non-canonical splice sites, which comprise 3.73% of GenBank annotated splice pairs. EST alignments allowed us to verify only the exonic part of splice sites. To check the conservative dinucleotides we compared sequences of human non-canonical splice sites with sequences from the high throughput genome sequencing project (HTG). Out of 171 human non-canonical and EST-supported splice pairs, 156 (91.23%) had a clear match in the human HTG. They can be classified after sequence analysis as: 79 GC-AG pairs (of which one was an error that corrected to GC-AG), 61 errors corrected to GT-AG canonical pairs, six AT-AC pairs (of which two were errors corrected to AT-AC), one case was produced from a non-existent intron, seven cases were found in HTG that were deposited to GenBank and finally there were only two other cases left of supported non-canonical splice pairs. The information about verified splice site sequences for canonical and non-canonical sites is presented in SpliceDB with the supporting evidence. We also built weight matrices for the major splice groups, which can be incorporated into gene prediction programs. SpliceDB is available at the computational genomic Web server of the Sanger Centre: http://genomic.sanger.ac. uk/spldb/SpliceDB.html and at http://www.softberry. com/spldb/SpliceDB.html.  相似文献   

7.
SUMMARY: We have developed U-PRIMER, a primer design program, to compute a minimal primer set (MPS) for any given set of DNA sequences. The U-PRIMER algorithm, which uses automatic variable fixing and automatic redundant constraint elimination to tackle the binary integer programming problem associated with the MPS selection problem. The program has been tested successfully with 32 adipocyte development-related genes and 9 TB-specific genes to obtain their respective MPSs. AVAILABILITY: A free copy of U-PRIMER implemented in C++ programming language is available from http://www.u-vision-biotech.com  相似文献   

8.
9.
MOTIVATION: Clustering sequences of a full-length cDNA library into alternative splice form candidates is a very important problem. RESULTS: We developed a new efficient algorithm to cluster sequences of a full-length cDNA library into alternative splice form candidates. Current clustering algorithms for cDNAs tend to produce too many clusters containing incorrect splice form candidates. Our algorithm is based on a spliced sequence alignment algorithm that considers splice sites. The spliced sequence alignment algorithm is a variant of an ordinary dynamic programming algorithm, which requires O(nm) time for checking a pair of sequences where n and m are the lengths of the two sequences. Since the time bound is too large to perform all-pair comparison for a large set of sequences, we developed new techniques to reduce the computation time without affecting the accuracy of the output clusters. Our algorithm was applied to 21 076 mouse cDNA sequences of the FANTOM 1.10 database to examine its performance and accuracy. In these experiments, we achieved about 2-12-fold speedup against a method using only a traditional hash-based technique. Moreover, without using any information of the mouse genome sequence data or any gene data in public databases, we succeeded in listing 87-89% of all the clusters that biologists have annotated manually. AVAILABILITY: We provide a web service for cDNA clustering located at https://access.obigrid.org/ibm/cluspa/, for which registration for the OBIGrid (http://www.obigrid.org) is required.  相似文献   

10.
SUMMARY: ESTminer is a collection of programs that use expressed sequence tag (EST) data from inbred genomes to identify unique genes within gene families. The algorithm utilizes Cap3 to perform an initial clustering of related EST sequences to produce a consensus sequence of a gene family. These consensus sequences are then used to collect all ESTs in the original EST library that are related using BLAST. A redundancy based criterion is applied to each EST to identify reliable unique gene-sequences. Using a highly inbred genome as a source of ESTs eliminates the necessity of computing covariance on each polymorphism to identify alleles of the same gene, thus making this algorithm more streamlined than other alternatives which must computationally attempt to distinguish genes from alleles. AVAILABILITY: The programs were written in PERL and are freely available at http://www.soybase.org/publication_data/Nelson/ESTminer/ESTminer.html CONTACT: nelsonrt@iastate.edu SUPPLEMENTARY INFORMATION: Figures and dataset can be obtained from: http://www.soybase.org/publication_data/Nelson/ESTminer/ESTminer.html.  相似文献   

11.
12.
The WWW servers at http://www.icgeb.trieste.it/dna/ are dedicated to the analysis of user-submitted DNA sequences; plot.it creates parametric plots of 45 physicochemical, as well as statistical, parameters; bend.it calculates DNA curvature according to various methods. Both programs provide 1D as well as 2D plots that allow localisation of peculiar segments within the query. The server model.it creates 3D models of canonical or bent DNA starting from sequence data and presents the results in the form of a standard PDB file, directly viewable on the user's PC using any molecule manipulation program. The recently established introns server allows statistical evaluation of introns in various taxonomic groups and the comparison of taxonomic groups in terms of length, base composition, intron type etc. The options include the analysis of splice sites and a probability test for exon-shuffling.  相似文献   

13.
14.
Investigating extended regulatory regions of genomic DNA sequences.   总被引:2,自引:0,他引:2  
MOTIVATION: Despite the growing volume of data on primary nucleotide sequences, the regulatory regions remain a major puzzle with regard to their function. Numerous recognising programs considering a diversity of properties of regulatory regions have been developed. The system proposed here allows the specific contextual, conformational and physico-chemical properties to be revealed based on analysis of extended DNA regions. RESULTS: The Internet-accessible computer system RegScan, designed to analyse the extended regulatory regions of eukaryotic genes, has been developed. The computer system comprises the following software: (i) programs for classification dividing a set of promoters into TATA-containing and TATA-less promoters and promoters with and without CpG islands; (ii) programs for constructing (a) nucleotide frequency profiles, (b) sequence complexity profiles and (c) profiles of conformational and physico-chemical properties; (iii) the program for constructing the sets of degenerate oligonucleotide motifs of a specified length; and (iv) the program searching for and visualising repeats in nucleotide sequences. The system has allowed us to demonstrate the following characteristic patterns of vertebrate promoter regions: the TATA box region is flanked by regions with an increased G+C content and increased bending stiffness, the TATA box content is asymmetric and promoter regions are saturated with both direct and inverted repeats. AVAILABILITY: The computer system RegScan is available via the Internet at http://www.mgs.bionet.nsc. ru/Systems/RegScan, http://www.cbil.upenn.edu/mgs/systems/r egscan/.  相似文献   

15.
16.
17.
We have developed a series of programs which assist in maintenance of structural RNA databases. A main program BLASTs the RNA database against GenBank and automatically extends and realigns the sequences to include the entire range of the RNA query sequences. After manual update of the database, other programs can examine base pair consistency and phylogenetic support. The output can be applied iteratively to refine the structural alignment of the RNA database. Using these tools, the number of potential misannotations per sequence was reduced from 20 to 3 in the Signal Recognition Particle RNA database. AVAILABILITY: A quick-server and programs are available at http://www.bioinf.au.dk/rnadbtool/  相似文献   

18.
19.
SUMMARY: Chimera allows the construction of chimeric protein or nucleic acid sequence files by concatenating sequences from two or more sequence files in PHYLIP formats. It allows the user to interactively select genes and species from the input files. The concatenated result is stored to one single output file in PHYLIP or NEXUS formats. AVAILABILITY: The computer program, including supporting files and example files, is available from http://www.dalicon.com/chimera/.  相似文献   

20.
InBase, the New England Biolabs Intein Database.   总被引:1,自引:0,他引:1       下载免费PDF全文
Inteins are intervening sequences that splice as proteins, not RNA. InBase, the New England Biolabs Intein Database (http://www.neb. com/neb/inteins.html), is a comprehensive on-line database that includes the Intein Registry, along with detailed information about each intein and its host protein, tabulated comparisons and a comprehensive bibliography including papers in press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号