首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis   总被引:8,自引:3,他引:5       下载免费PDF全文
《The Journal of cell biology》1994,127(5):1259-1273
Several groups have reported the cloning and sequencing of genes involved in the biogenesis of yeast peroxisomes. Yeast strains bearing mutations in these genes are unable to grow on carbon sources whose metabolism requires peroxisomes, and these strains lack morphologically normal peroxisomes. We report the cloning of Pichia pastoris PAS1, the homologue (based on a high level of protein sequence similarity) of the Saccharomyces cerevisiae PAS1. We also describe the creation and characterization of P. pastoris pas1 strains. Electron microscopy on the P. pastoris pas1 cells revealed that they lack morphologically normal peroxisomes, and instead contain membrane-bound structures that appear to be small, mutant peroxisomes, or "peroxisome ghosts." These "ghosts" proliferated in response to induction on peroxisome-requiring carbon sources (oleic acid and methanol), and they were distributed to daughter cells. Biochemical analysis of cell lysates revealed that peroxisomal proteins are induced normally in pas1 cells. Peroxisome ghosts from pas1 cells were purified on sucrose gradients, and biochemical analysis showed that these ghosts, while lacking several peroxisomal proteins, did import varying amounts of several other peroxisomal proteins. The existence of detectable peroxisome ghosts in P. pastoris pas1 cells, and their ability to import some proteins, stands in contrast with the results reported by Erdmann et al. (1991) for the S. cerevisiae pas1 mutant, in which they were unable to detect peroxisome-like structures. We discuss the role of PAS1 in peroxisome biogenesis in light of the new information regarding peroxisome ghosts in pas1 cells.  相似文献   

2.
M Marzioch  R Erdmann  M Veenhuis    W H Kunau 《The EMBO journal》1994,13(20):4908-4918
To identify components of the peroxisomal import pathway in yeast, we have isolated pas mutants affected in peroxisome biogenesis. Two mutants assigned to complementation group 7 define a new gene, PAS7, whose product is necessary for import of thiolase, a PTS2-containing protein, but not for that of SKL (PTS1)-containing proteins, into peroxisomes. We have cloned PAS7 by complementation of the oleic acid non-utilizing phenotype of the pas7-1 strain. The DNA sequence predicts a 42.3 kDa polypeptide of 375 amino acids encoding a novel member of the beta-transducin related (WD-40) protein family. A Myc epitope-tagged Pas7p, expressed under the control of the CUP1 promotor, was functionally active. Subcellular localization studies revealed that in the presence of thiolase this epitope-tagged Pas7p in part associates with peroxisomes. However, in a thiolase-deficient mutant, Pas7p was entirely found in the cytoplasm. We suggest that Pas7p mediates the binding of thiolase to these organelles.  相似文献   

3.
We previously described the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targeting signals, PTS1 and PTS2, have been identified that are sufficient to direct proteins to the peroxisomal matrix. We show that the pas8 mutant is deficient in the import of proteins with the PTS1, but not the PTS2, targeting signal. This is the same import deficiency as that found in cells from patients with the lethal human peroxisomal disorder Zellweger syndrome. Cloning and sequencing of the PAS8 gene reveals that it is a novel member of the tetratricopeptide repeat gene family. Antibodies raised against bacterially expressed PAS8 are used to show that PAS8 is a peroxisomal, membrane-associated protein. Also, we have found that in vitro translated PAS8 protein is capable of binding the PTS1 targeting signal specifically, raising the possibility that PAS8 is a PTS1 receptor.  相似文献   

4.
《The Journal of cell biology》1993,123(5):1133-1147
The goal of this research is to identify and characterize the protein machinery that functions in the intracellular translocation and assembly of peroxisomal proteins in Saccharomyces cerevisiae. Several genes encoding proteins that are essential for this process have been identified previously by Kunau and collaborators, but the mutant collection was incomplete. We have devised a positive selection procedure that identifies new mutants lacking peroxisomes or peroxisomal function. Immunofluorescence procedures for yeast were simplified so that these mutants could be rapidly and efficiently screened for those in which peroxisome biogenesis is impaired. With these tools, we have identified four complementation groups of peroxisome biogenesis mutants, and one group that appears to express reduced amounts of peroxisomal proteins. Two of our mutants lack recognizable peroxisomes, although they might contain peroxisomal membrane ghosts like those found in Zellweger syndrome. Two are selectively defective in packaging peroxisomal proteins and moreover show striking intracellular clustering of the peroxisomes. The distribution of mutants among complementation groups implies that the collection of peroxisome biogenesis mutants is still incomplete. With the procedures described, it should prove straightforward to isolate mutants from additional complementation groups.  相似文献   

5.
We have cloned and sequenced PAS7, a gene required for peroxisome assembly in the yeast Pichia pastoris. The product of this gene, Pas7p, is a member of the C3HC4 superfamily of zinc-binding proteins. Point mutations that alter conserved residues of the C3HC4 motif abolish PAS7 activity and reduce zinc binding, suggesting that Pas7p binds zinc in vivo and that zinc binding is essential for PAS7 function. As with most pas mutants, pas7 cells exhibit a pronounced deficiency in import of peroxisomal matrix proteins that contain either the type 1 peroxisomal targeting signal (PTS1) or the type 2 PTS (PTS2). However, while other yeast and mammalian pas mutants accumulate ovoid, vesicular peroxisomal intermediates, loss of Pas7p leads to accumulation of membrane sheets and vesicles which lack a recognizable lumen. Thus, Pas7p appears to be essential for protein translocation into peroxisomes as well as formation of the lumen of the organelle. Consistent with these data, we find that Pas7p is an integral peroxisomal membrane protein which is entirely resistant to exogenous protease and thus appears to reside completely within the peroxisome. Our observations suggest that the function of Pas7p defines a previously unrecognized step in peroxisome assembly: formation of the peroxisome lumen. Furthermore, because the peroxisomal intermediates in the pas7 delta mutant proliferate in response to peroxisome-inducing environmental conditions, we conclude that Pas7p is not required for peroxisome proliferation.  相似文献   

6.
Fluorescent peroxisomal probes were developed by fusing green fluorescent protein (GFP) to the matrix peroxisomal targeting signals PTS1 and PTS2, as well as to an integral peroxisomal membrane protein (IPMP). These proteins were used to identify and characterize novel peroxisome assembly (pas) mutants in the yeast Pichia pastoris. Mutant cells lacking the PAS10 gene mislocalized both PTS1-GFP and PTS2-GFP to the cytoplasm but did incorporate IPMP-GFP into peroxisome membranes. Similar distributions were observed for endogenous peroxisomal matrix and membrane proteins. While peroxisomes from translocation-competent pas mutants sediment in sucrose gradients at the density of normal peroxisomes, >98% of peroxisomes from pas10 cells migrated to a much lower density and had an extremely low ratio of matrix:membrane protein. These data indicate that Pas10p plays an important role in protein translocation across the peroxisome membrane. Consistent with this hypothesis, we find that Pas10p is an integral protein of the peroxisome membrane. In addition, Pas10p contains a cytoplasmically-oriented C3HC4 zinc binding domain that is essential for its biological activity.  相似文献   

7.
Most mammalian cell strains genetically deficient in peroxisome biogenesis have abnormal membrane structures called ghosts, containing integral peroxisomal membrane protein, PMP70, but lacking the peroxisomal matrix proteins. Upon genetic complementation, these mutants regain the ability of peroxisome biogenesis. It is postulated that, in this process, the ghosts act as the precursors of peroxisomes, but there has been no evidence to support this. In the present study, we investigated this issue by protein microinjection to a mutant Chinese hamster ovary cell line defective of PEX5, encoding a peroxisome-targeting signal receptor. When recombinant Pex5p and green fluorescent protein (GFP) carrying a peroxisome-targeting signal were co-injected into the mutant cells, the GFP fluorescence gathered over time to particulate structures where PMP70 was co-localized. This process was dependent on both Pex5p and the targeting signal, and, most importantly, occurred even in the presence of cycloheximide, a protein synthesis inhibitor. These findings suggest that the ghosts act as acceptors of matrix proteins in the peroxisome recovery process at least in the PEX5 mutant, and support the view that peroxisomes can grow by incorporating newly synthesized matrix proteins.  相似文献   

8.
We have previously reported the isolation of Chinese hamster ovary (CHO) cell mutants that are defective in the biosynthesis of plasmalogens, deficient in at least two peroxisomal enzymes (dihydroxyacetonephosphate (DHAP) acyltransferase and alkyl-DHAP synthase), and in which catalase is not found within peroxisomes (Zoeller, R. A., and Raetz, C. R. H. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5170). We now provide further evidence that three such strains are more generally defective in peroxisome biogenesis. Electron microscopic cytochemistry revealed that the mutants did not contain recognizable peroxisomes. However, immunofluorescence microscopy using an antibody directed against peroxisomal integral membrane proteins revealed the presence of peroxisomal membrane ghosts resembling those seen in cells of patients suffering from one of the human peroxisomal disorders, Zellweger syndrome. Immunoblot analyses, using antibodies specific for peroxisomal matrix proteins, demonstrated deficiencies of peroxisomal proteins in the mutant CHO cells that were similar to those in Zellweger syndrome. Fusion of a CHO mutant with fibroblasts obtained from Zellweger patients resulted in restoration of peroxisomal dihydroxyacetonephosphate acyltransferase and peroxisomal acyl-coenzyme A oxidation activities. The hybrid cells also regained the ability to synthesize plasmenylethanolamine. Moreover, normal peroxisomes were seen by immunofluorescence in the hybrid cells. These results indicate that the hybrid cells have recovered the ability to assemble peroxisomes and that, although the mutant CHO cells are biochemically and morphologically very similar to cells from patients with Zellweger syndrome, the genetic lesions are distinct. Our somatic cell mutants should be useful in identifying factors and genes involved in peroxisome biogenesis and may aid the genetic categorization of the various peroxisomal disorders.  相似文献   

9.
We have identified two temperature-sensitive peroxisome-deficient mutants of Hansenula polymorpha (ts6 and ts44) within a collection of ts mutants which are impaired for growth on methanol at 43 degrees C but grow well at 35 degrees C. In both strains peroxisomes were completely absent in cells grown at 43 degrees C; the major peroxisomal matrix enzymes alcohol oxidase, dihydroxyacetone synthase and catalase were synthesized normally but assembled into the active enzyme protein in the cytosol. As in wild-type cells, these enzymes were present in peroxisomes under permissive growth conditions (< or = 37 degrees C). However, at intermediate temperatures (38-42 degrees C) they were partly peroxisome-bound and partly resided in the cytosol. Genetic analysis revealed that both mutant phenotypes were due to monogenic recessive mutations mapped in the same gene, designated PER13. After a shift of per13-6ts cells from restrictive to permissive temperature, new peroxisomes were formed within 1 h. Initially one--or infrequently a few--small organelles developed which subsequently increased in size and multiplied by fission during prolonged permissive growth. Neither mature peroxisomal matrix nor membrane proteins, which were present in the cytosol prior to the temperature shift, were incorporated into the newly formed organelles. Instead, these proteins remained unaffected (and active) in the cytosol concomitant with further peroxisome development. Thus in H.polymorpha alternative mechanisms of peroxisome biogenesis may be possible in addition to multiplication by fission upon induction of the organelles by certain growth substrates.  相似文献   

10.
Peroxisomes are thought to be formed by division of pre-existing peroxisomes after the import of newly synthesized proteins. However, it has been recently suggested that the endoplasmic reticulum (ER) provides an alternative de novo mechanism for peroxisome biogenesis in some cells. To test a possible role of the ER-Golgi transit in peroxisome biogenesis in mammalian cells, we evaluated the biogenesis of three peroxisomal membrane proteins (PMPs): ALDRP (adrenoleukodystrophy related protein), PMP70 and Pex3p in CHO cells. We constructed chimeric genes encoding these PMPs and green fluorescent protein (GFP), and transiently transfected them to wild type and mutant CHO cells, in which normal peroxisomes were replaced by peroxisomal membrane ghosts. The expressed proteins were targeted to peroxisomes and peroxisomal ghosts correctly in the presence or absence of Brefeldin A (BFA), a drug known to block the ER-Golgi transit. Furthermore, low temperature did not disturb the targeting of Pex3p-GFP to peroxisomes. We also constructed two chimeric proteins of PMPs containing an ER retention signal "DEKKMP": GFP-ALDRP-DEKKMP and myc- Pex3p-DEKKMP. These proteins were mostly targeted to peroxisomes. No colocalization with an ER maker was found. These results suggest that the classical ER-Golgi pathway does not play a major role in the biogenesis of mammalian PMPs.  相似文献   

11.
Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16 degrees C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16 degrees C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes.  相似文献   

12.
Pex18p is constitutively degraded during peroxisome biogenesis   总被引:1,自引:0,他引:1  
Pex18p and Pex21p are structurally related yeast peroxins (proteins required for peroxisome biogenesis) that are partially redundant in function. One or the other is essential for the import into peroxisomes of proteins with type 2 peroxisomal targeting sequences (PTS2). These sequences bind to the soluble PTS2 receptor, Pex7p, which in turn binds to Pex18p (or Pex21p or possibly both). Here we show that Pex18p is constitutively degraded with a half-time of less than 10 min in wild-type Saccharomyces cerevisiae. This degradation probably occurs in proteasomes, because it requires the related ubiquitin-conjugating enzymes Ubc4p and Ubc5p and occurs normally in a mutant lacking the Pep4p vacuolar protease. The turnover of Pex18p stops, and Pex18p accumulates to a much higher than normal abundance in pex mutants in which the import of all peroxisomal matrix proteins is blocked. This includes mutants that lack peroxins involved in receptor docking at the membrane (Deltapex13 or Deltapex14), a mutant that lacks the peroxisomal member of the E2 family of ubiquitin-conjugating enzymes (Deltapex4), and others (Deltapex1). This stabilization in a variety of pex mutants indicates that Pex18p turnover is associated with its normal function. A Pex18p-Pex7p complex is detected by immunoprecipitation in wild type cells, and its abundance increases considerably in the Deltapex14 peroxisome biogenesis mutant. Cells that lack Pex7p fail to stabilize and accumulate Pex18p, indicating an important role for complex formation in the stabilization. Mono- and diubiquitinated forms of Pex18p are detected in wild-type cells, and there is no Pex18p turnover in a yeast doa4 mutant in which ubiquitin homeostasis is defective. These data represent, to the best of our knowledge, the first instance of an organelle biogenesis factor that is degraded constitutively and rapidly.  相似文献   

13.
14.
To study peroxisome biogenesis, we developed a procedure to select for Saccharomyces cerevisiae mutants defective in peroxisomal protein import or peroxisome assembly. For this purpose, a chimeric gene was constructed encoding the bleomycin resistance protein linked to the peroxisomal protein luciferase. In wild-type cells this chimeric protein is imported into the peroxisome, which prevents the neutralizing interaction of the chimeric protein with its toxic phleomycin ligand. Peroxisomal import and peroxisome assembly mutants are unable to import this chimeric protein into their peroxisomes. This enables the bleomycin moiety of the chimeric protein to bind phleomycin, thereby preventing its toxicity. The selection is very efficient: upon mutagenesis, 84 (10%) of 800 phleomycin resistant colonies tested were unable to grow on oleic acid. This rate could be increased to 25% using more stringent selection conditions. The selection procedure is very specific; all oleic acid non utilizing (onu) mutants tested were disturbed in peroxisomal import and/or peroxisome assembly. The pas (peroxisome assembly) mutants that have been used for complementation analysis represent 12 complementation groups including three novel ones, designated pas20, pas21 and pas22.  相似文献   

15.
Peroxisomes are subcellular organelles catalyzing a number of indispensable functions in cellular metabolism. The importance of peroxisomes in man is stressed by the existence of an expanding group of genetic diseases in which there is an impairment in one or more peroxisomal functions. Much has been learned in recent years about these functions and many of the enzymes involved have been characterized, purified and their cDNAs cloned. This has allowed resolution of the enzymatic and molecular basis of many of the single peroxisomal enzyme deficiencies. Similarly, the molecular basis of the peroxisome biogenesis disorders is also being resolved rapidly thanks to the successful use of CHO as well as yeast mutants. In this paper we will provide an overview of the peroxisomal disorders with particular emphasis on their clinical, biochemical and molecular characteristics.  相似文献   

16.
In wild-type Hansenula polymorpha the proliferation of peroxisomes in induced by various unconventional carbon- and nitrogen sources. Highest induction levels, up to 80% of the cytoplasmic volume, are observed in cells grown in methanol-limited chemostat cultures. Based on our accumulated experience, we are now able to precisely adjust both the level of the peroxisome induction as well as their protein composition by specific adaptations in growth conditions. During the last few years a series of "peroxisome-deficient (per) mutants of H. polymorpha have been isolated and characterized. Phenotypically these mutants are characterized by the fact that they are not able to grow on methanol. Three mutant phenotypes were defined on the basis of morphological criteria, namely: (a) mutants completely lacking peroxisomes (Per-;13 complementation groups); (b) mutants containing few small peroxisomes which are partly impaired in the peroxisomal import of matrix proteins (Pim-; five complementation groups); and (c) mutants with aberrations in the peroxisomal substructure (Pss-; two complementation groups). In addition, several conditional Per-, Pim- and Pss- mutants have been obtained. In all cases the mutant phenotype was shown to be caused by a recessive mutation in one gene. However, we observed that different mutations in one gene may cause different morphological mutant phenotypes. A detailed genetic analysis revealed that several PER genes, essential for peroxisome biogenesis, are tightly linked and organized in a hierarchical fashion. The use of both constitual and conditional per mutants in current and future studies of the molecular mechanisms controlling peroxisome biogenesis and function is discussed.  相似文献   

17.
Peroxisomes are organelles that confine an important set of enzymes within their single membrane boundaries. In man, a wide variety of genetic disorders is caused by loss of peroxisome function. In the most severe cases, the clinical phenotype indicates that abnormalities begin to appear during embryological development. In less severe cases, the quality of life of adults is affected. Research on yeast model systems has contributed to a better understanding of peroxisome formation and maintenance. This framework of knowledge has made it possible to understand the molecular basis of most of the peroxisome biogenesis disorders. Interestingly, most peroxisome biogenesis disorders are caused by a failure to target peroxisomal proteins to the organellar matrix or membrane, which classifies them as protein targeting diseases. Here we review recent fundamental research on peroxisomal protein targeting and discuss a few burning questions in the field concerning the origin of peroxisomes.  相似文献   

18.
Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1 leads to a pleiotropic phenotype that includes the constitutive presence of peroxisomes and peroxisomal enzymes in glucose-grown cells. Glucose transport and repression defects in a UV-induced gcr1-2 mutant were found to result from a missense point mutation that substitutes a serine residue (Ser(85)) with a phenylalanine in the second predicted transmembrane segment of the Gcr1 protein. In addition to glucose, mannose and trehalose fail to repress the peroxisomal enzyme, alcohol oxidase in gcr1-2 cells. A mutant deleted for the GCR1 gene was additionally deficient in fructose repression. Ethanol, sucrose, and maltose continue to repress peroxisomes and peroxisomal enzymes normally and therefore, appear to have GCR1-independent repression mechanisms in H. polymorpha. Among proteins of the hexose transporter family of baker's yeast, Saccharomyces cerevisiae, the amino acid sequence of the H. polymorpha Gcr1 protein shares the highest similarity with a core region of Snf3p, a putative high affinity glucose sensor. Certain features of the phenotype exhibited by gcr1 mutants suggest a regulatory role for Gcr1p in a repression pathway, along with involvement in hexose transport.  相似文献   

19.
The peroxisomal targeting signal 1 (PTS1), consisting of a C-terminal tripeptide (SKL and variants), directs polypeptides to the peroxisome matrix in evolutionarily diverse organisms. Previous studies in the methylotrophic yeast Pichia pastoris identified a 68 kDa protein, PAS8p, as a potential component of the PTS1 import machinery. We now report several new properties of this molecule which, taken together, show that it is the peroxisomal PTS1 receptor. (i) PAS8p is localized to and tightly associated with the cytoplasmic side of the peroxisomal membrane, (ii) peroxisomes of wild-type, but not of pas8 delta (null) mutant, P.pastoris cells bind a PTS1-containing peptide (CRYHLKPLQSKL), (iii) CRYHLKPLQSKL can be cross-linked to PAS8p after binding at the peroxisome membrane and (iv) purified PAS8p binds CRYHLKPLQSKL with high affinity (nanomolar dissociation constant). In addition, the tetratricopeptide repeat (TPR) domain of PAS8p is identified as the PTS1 binding region.  相似文献   

20.
Peroxisomes contain oxidases generating hydrogen peroxide, and catalase degrading this toxic compound. Another characteristic function of each eukaryotic peroxisome, from yeast to man, is fatty acid beta-oxidation. However, in peroxisomes a variety of other metabolic pathways are located. In fungi, peroxisomes contain enzymes involved in catabolism of unusual carbon and nitrogen sources (methanol, purines, D-amino acids, pipecolynic acid, sarcosine, glycolate, spermidine etc) as well as biosynthesis of lysine in yeasts and penicillin in mycelial fungi. Impairment of peroxisomal structure and functions causes many human disorders. The similar defects have been identified in yeast mutants defective in peroxisomal biogenesis. Peroxisomal biogenesis is actively studied during last two decades using uni- and multicellular model systems. It was observed that many aspects of peroxisomal biogenesis and proteins involved in this process display striking similarity between all eukaryotes, from yeasts to humans. Yeast is a convenient model system for this kind of research. Current review summarizes data on molecular events of peroxisomal biogenesis, functions of peroxine proteins, import of peroxisomal matrix and membrane proteins and on mechanisms of peroxisomedivision and inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号