首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene-wide association and candidate gene studies indicate that the greatest effect on multiple sclerosis (MS) risk is driven by the HLA-DRB1*15:01 allele within the HLA-DR15 haplotype (HLA-DRB1*15:01-DQA1*01:02-DQB1*0602-DRB5*01:01). Nevertheless, linkage disequilibrium makes it difficult to define, without functional studies, whether the functionally relevant effect derives from DRB1*15:01 only, from its neighboring DQA1*01:02-DQB1*06:02 or DRB5*01:01 genes of HLA-DR15 haplotype, or from their combinations or epistatic interactions. Here, we analyzed the impact of the different HLA-DR15 haplotype alleles on disease susceptibility in a new “humanized” model of MS induced in HLA-transgenic (Tg) mice by human oligodendrocyte-specific protein (OSP)/claudin-11 (hOSP), one of the bona fide potential primary target antigens in MS. We show that the hOSP-associated MS-like disease is dominated by the DRB1*15:01 allele not only as the DRA1*01:01;DRB1*15:01 isotypic heterodimer but also, unexpectedly, as a functional DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. The contribution of HLA-DQA1/DRB1 mixed isotype heterodimer to OSP pathogenesis was revealed in (DRB1*1501xDQB1*0602)F1 double-Tg mice immunized with hOSP(142–161) peptide, where the encephalitogenic potential of prevalent DRB1*1501/hOSP(142–161)-reactive Th1/Th17 cells is hindered due to a single amino acid difference in the OSP(142–161) region between humans and mice; this impedes binding of DRB1*1501 to the mouse OSP(142–161) epitope in the mouse CNS while exposing functional binding of mouse OSP(142–161) to DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. This study, which shows for the first time a functional HLA-DQA1/DRB1 mixed isotype heterodimer and its potential association with disease susceptibility, provides a rationale for a potential effect on MS risk from DQA1*01:02 through functional DQA1*01:02;DRB1*15:01 antigen presentation. Furthermore, it highlights a potential contribution to MS risk also from interisotypic combination between products of neighboring HLA-DR15 haplotype alleles, in this case the DQA1/DRB1 combination.  相似文献   

2.
Allelic variation of ovine MHC class II DQA1 and DQA2 genes   总被引:4,自引:0,他引:4  
In the present study we characterize allelic variation of polymorphic OLA-DQA1 and OLA-DQA2 genes in sheep. To achieve this, PCR primers were designed to independently amplify the second exons of OLA-DQA1 and OLA-DQA2 genes. Single strand conformation polymorphism (SSCP) gel analyses reveals that there are at least 12 distinct OLA-DQA2 sequences, 10 of which have been characterized by sequencing. Six distinct OLA-DQA1 alleles have been sequenced in sheep and we can detect at least seven DQA1 alleles, including a null allele, by SSCP analysis. The second exon of the OLA-DQA2 gene is more polymorphic than the equivalent region of the OLA-DQA1 gene. Thirty-two per cent of nucleotide and 49% of amino acid sites showed variation at the DQA2 locus, compared to 20% of nucleotide and 33% of amino acid sites for DQA1 . Phylogenetic analysis of DQA sequences from a number of species show that sheep DQA1 sequences group together and are more similar to bovine DQA1 sequences than to sheep DQA2 alleles. The majority of OLA-DQA2 sequences are on the same main branch of the phylogenetic tree as bovine DQA2 sequences. However, three sheep DQA2 sequences have a tendency to group with putative bovine DQA3 sequences rather than to other ovine DQA2 alleles. A variety of SSCP gel conditions were tried in order to develop a typing system for the OLA-DQA2 gene. We describe a set of PCR and SSCP conditions which distinguish between all known OLA-DQA2 alleles.  相似文献   

3.
4.
5.
 We describe the development of a polymerase chain reaction (PCR)-based approach for analysis of genetic diversity at the DQA loci in African Bos indicus and Bos taurus cattle. This approach, equally effective in European and Asian cattle breeds, detects the presence or absence of DQA1 and most duplicated DQA2 genes. Nucleotide and predicted amino acid sequence analysis of the highly polymorphic second exons, in addition to analysis of the locus-specific and relatively non-polymorphic transmembrane, cytoplasmic, and 3-prime untranslated regions, has provided evidence for considerable diversity between each of the duplicated DQA2 genes. Therefore, we propose the designation BoLA-DQA3 for the previously unpublished alleles at the second DQA2 locus. Fourteen distinct PCR restriction fragment length polymorphism (RFLP) patterns, each identifying families of alleles at three DQA loci, can be distinguished. Nucleotide sequence analysis of new PCR-RFLP patterns from 193 Kenyan Boran, Ethiopian Arsi (B. indicus), and Guinean N’Dama (B. taurus) cattle identified 13 DQA1 alleles within eight major allelic families, five DQA2 alleles within a single allelic family, and seven DQA3 alleles within three major allelic families. Received: 19 February 1997 / Revised: 28 February 1997  相似文献   

6.
WNV is a zoonotic neurotropic flavivirus that has recently emerged globally as a significant cause of viral encephalitis. The last five years, 624 incidents of WNV infection have been reported in Greece. The risk for severe WNV disease increases among immunosuppressed individuals implying thus the contribution of the MHC locus to the control of WNV infection. In order to investigate a possible association of MHC class II genes, especially HLA-DPA1, HLA-DQA1, HLA-DRB1, we examined 105 WNV patients, including 68 cases with neuroinvasive disease and 37 cases with mild clinical phenotype, collected during the period from 2010 to2013, and 100 control individuals selected form the Greek population. Typing was performed for exon 2 for all three genes. DQA1*01:01 was considered to be "protective" against WNV infection (25.4% vs 40.1%, P = 0.004) while DQA1*01:02 was associated with increased susceptibility (48.0% vs 32.1%, P = 0.003). Protection against neuroinvasion was associated with the presence of DRB1*11:02 (4.99% vs 0.0%, P = 0.018). DRB1*16:02 was also absent from the control cohort (P = 0.016). Three additional population control groups were used in order to validate our results. No statistically significant association with the disease was found for HLA-DPA alleles. The results of the present study provide some evidence that MHC class II is involved in the response to WNV infection, outlining infection "susceptibility" and "CNS-high-risk" candidates. Furthermore, three new alleles were identified while the frequency of all alleles in the study was compared with worldwide data. The characterization of the MHC locus could help to estimate the risk for severe WNV cases in a country.  相似文献   

7.
The two Epstein-Barr virus (EBV) types, EBV-1 and EBV-2, are known to differ in their EBNA-2 genes, which are 64 and 53% identical in their nucleotide and predicted amino acid sequences, respectively. Restriction endonuclease maps and serologic analyses detect few other differences between EBV-1 and EBV-2 except in the EBNA-3 gene family. We determined the DNA sequence of the AG876 EBV-2 EBNA-3 coding region and have compared it with known B95-8 EBV-1 EBNA-3 sequences to delineate the extent of divergence between EBV-1 and EBV-2 isolates in their EBNA-3 genes. The B95-8 and AG876 EBV isolates had nucleotide and amino acid identity levels of 90 and 84%, 88 and 80%, and 81 and 72% for the EBNA-3A, -3B, and -3C genes, respectively. In contrast, nucleotide sequence identity in the noncoding DNA adjacent to the B95-8 and AG876 EBNA-3 open reading frames was 96%. We used the polymerase chain reaction to demonstrate that five additional EBV-1 isolates and six additional EBV-2 isolates have the type-specific differences in their EBNA-3 genes predicted from the B95-8 or AG876 sequences. Thus, EBV-1 and EBV-2 are two distinct wild-type EBV strains that have significantly diverged at four genetic loci and have maintained type-characteristic differences at each locus. The delineation of these sequence differences between EBV-1 and EBV-2 is essential to ongoing molecular dissection of the biologic properties of EBV and of the human immune response to EBV infection. The application of these data to the delineation of epitopes recognized in the EBV-immune T-cell response is also discussed.  相似文献   

8.
Comparative genomic analysis of two avian (quail and chicken) MHC regions   总被引:11,自引:0,他引:11  
We mapped two different quail Mhc haplotypes and sequenced one of them (haplotype A) for comparative genomic analysis with a previously sequenced haplotype of the chicken Mhc. The quail haplotype A spans 180 kb of genomic sequence, encoding a total of 41 genes compared with only 19 genes within the 92-kb chicken Mhc. Except for two gene families (B30 and tRNA), both species have the same basic set of gene family members that were previously described in the chicken "minimal essential" Mhc. The two Mhc regions have a similar overall organization but differ markedly in that the quail has an expanded number of duplicated genes with 7 class I, 10 class IIB, 4 NK, 6 lectin, and 8 B-G genes. Comparisons between the quail and chicken Mhc class I and class II gene sequences by phylogenetic analysis showed that they were more closely related within species than between species, suggesting that the quail Mhc genes were duplicated after the separation of these two species from their common ancestor. The proteins encoded by the NK and class I genes are known to interact as ligands and receptors, but unlike in the quail and the chicken, the genes encoding these proteins in mammals are found on different chromosomes. The finding of NK-like genes in the quail Mhc strongly suggests an evolutionary connection between the NK C-type lectin-like superfamily and the Mhc, providing support for future studies on the NK, lectin, class I, and class II interaction in birds.  相似文献   

9.
The BoLA (bovine lymphocyte antigen) Nomenclature Committee met during the 1994 and 1996 conferences of the International Society for Animal Genetics to define a sequence-based nomenclature system for genes of the BoLA system. The rules for acceptance of new sequences are described and names are assigned to the sequenced alleles of the class II genes DRA, DRB1, DRB2, DRB3, DQA, DQB, DYA, DIB, DMA and DMB . The assignment of BoLA class I sequences to loci will be considered at a later workshop when further sequencing/mapping data are available.  相似文献   

10.
11.
Humans express an array of Mhc genes, while the chicken has an Mhc that is relatively small and compact with fewer expressed genes. Here we ask whether the "minimal essential Mhc" of the chicken is representative for birds. We investigated the RFLP genotypes in 55 great reed warblers Acrocephalus arundinaceus and 10 willow warblers Phylloscopus trochilus to obtain an overview of the number of class II B genes. There were 13-17 bands per individual in the great reed warblers and 25-30 in the willow warblers, and every individual had a unique RFLP genotype. The high number of RFLP bands indicates that both species have a large number of class II B genes although some may be pseudogenes. Seven different class II B sequences were detected in a great reed warbler cDNA library. There was considerable sequence divergence between the cDNA sequences in exon 2 (peptide-binding region, PBR), whereas they were very similar in exon 3. The cDNA sequences were easily alignable to a classical chicken class II B sequence, and balancing selection was acting in the PBR. One of the cDNA sequences had two deletions and is likely nonfunctional. Finally, the polymorphic class I and class II B RFLP fragments seemed to be linked in the five studied great reed warbler families. These and previous results suggest that birds of the order Passeriformes in general have more Mhc class I and II B genes than birds of the order Galliformes. This difference could be caused by their phylogenetic past, and/or by variance in the selection pressure for maintaining a high number of Mhc genes.  相似文献   

12.
Major histocompatibility complex class I genes are among the most polymorphic genes characterized. The high level of polymorphism is essential for generating host immune responses. In humans, three distinct genomic loci encode human leukocyte antigen (HLA) class I genes, allowing individuals to express up to six different HLA class I molecules. In cattle, the number of distinct genomic loci are currently at least six, and the number of different bovine leukocyte antigens (BoLA) class I molecules that are expressed in individual animals are variable. The extent of allele variation within the cattle population is unknown. In this study, the number and variety of BoLA class I sequences expressed by 36 individuals were determined from full-length BoLA class I cDNA clones. Twenty distinct BoLA class I alleles were identified, with only four being previously reported. The number of expressed BoLA class I alleles in individual animals ranged between one and four, with none of the animals having an identical complement of BoLA class I molecules. Variation existed in the number of BoLA class I alleles expressed as well as the composition of expressed alleles, however, several BoLA class I alleles were found in multiple individual animals. Polymorphic amino acid sites were analyzed for positive and negative selection using the ADAPTSITE program. In the antigen recognition sites (ARS), there were eight positions that were predicted to be under positive selection and three positions that were predicted to be under negative selection from 62 positions. In contrast, for non-antigen recognition sites (non-ARS), there were three positions that were predicted to be under positive selection and 20 that were predicted to be under negative selection from 278, indicating that positive selection of amino acids occurs at a greater frequency within the antigen recognition sites.  相似文献   

13.
A cDNA library screening using the conserved exon 4 of Atlantic salmon Mhc class I as probe provided the basis for a study on Mhc class I polymorphism in a breeding population. Twelve different alleles were identified in the 82 dams and sires studied. No individual expressed more than two alleles, which corresponded to the diploid segregation patterns of the polymorphic marker residing within the 3'-untranslated tail. Close linkage between the Sasa-UBA and Sasa-TAP2B loci strengthens the claim that Sasa-UBA is the major Mhc class I locus in Atlantic salmon. We found no evidence for a second expressed classical or non-classical Mhc class I locus in Atlantic salmon. A phylogenetic analysis of salmonid Mhc class I sequences showed domains conserved between rainbow trout, brown trout and Atlantic salmon. Evidence for shuffling of the alpha(1) domain was identified and lineages of the remaining alpha(2) through the cytoplasmic tail gene segment can be defined. The coding sequence of one allele was found associated with two different markers, suggesting recombination within the 3'-tail dinucleotide repeat itself. Protein modelling of several Sasa-UBA alleles shows distinct differences in their peptide binding domains and enables a further understanding of the functionality of the high polymorphism.  相似文献   

14.
The HLA class II alleles (DRB1, DRB3, DRB5, DQA1, and DQB1) and haplotypic associations were studied in the population of the island of Krk using the PCR-SSOP method and the 12th International Histocompatibility Workshop primers and probes. Allele and haplotypic frequencies were compared with the general Croatian population. Significant differences were observed between the population of the island of Krk and Croatians for: a) three broad specificities at DRB1 locus (DRB1*01, *15, and *07), b) one allele at DRB3 locus (DRB3*0301), c) one allele at DQA1 locus (DQA1*0201), d) one allele at DQB1 locus (DQB1*0303). Four unusual haplotypic associations, which have not yet been described in the Croatian population, DRB1*1301-DQA1*0103-DQB1*0607, DRB1*1302-DQA1*0102-DQB1*0605, DRB1*1305-DQA1*0102-DQB1*0605 and DRB1*1305-DQA1*0103-DQB1*0603 were observed in the population from the island of Krk.  相似文献   

15.
The DRB family of human class II major histocompatibility complex (Mhc) loci is unusual in that individuals differ in the number and combination of genes (haplotypes) they carry. Indications are that both the allelic and haplotype polymorphisms of the DRB loci predate speciation. Searching for the evolutionary origins of these polymorphisms, we have sequenced five DRB clones isolated from a cDNA library of a pigtail macaque (Macaca nemestrina) B lymphocyte line. The clones represent five different genes which we designate Mane-DRB*01-Mane-DRB*05. The genes appears to be approximately equidistant from each other, so that allelic relationships between them cannot be established on the basis of the sequence data alone. If positions coding for the peptide-binding region of the class II beta chains are eliminated from sequence comparisons, the Mane-DRB genes appear to be most closely related to the human (HLA) DRB1 genes of the DRw52 group. We interpret this finding to indicate that the ancestral gene of the DRw52 group of human DRB1 alleles separated from the rest of the HLA-DRB1 alleles before the separation of the Old World monkeys (Cercopithecoidea) from the apes (Hominoidea) in the early Oligocene. After this separation, the ancestral DRB1 gene of the DRw52 group duplicated in the Old World monkey lineage to give rise to genes at three loci at least, while in the ape lineage this gene may have remained single and diverged into a number of alleles instead. These findings suggest that some of the polymorphism currently present at the DRB1 locus is greater than 35 Myr old.  相似文献   

16.
In HIV-infected humans and SIV-infected rhesus macaques, host genes influence viral containment and hence the duration of the disease-free latency period. Our knowledge of the rhesus monkey immunogenetics, however, is limited. In this study, we describe partial cDNA sequences of five newly discovered rhesus macaque (Mamu) class I alleles and PCR-based typing techniques for the novel and previously published Mhc class I alleles. Using 15 primer pairs for PCR-based typing and DNA sequence analysis, we identified at least 21 Mhc class I alleles in a cohort of 91 SIV-infected macaques. The results confirm the presence of multiple class I genes in rhesus macaques. Of these alleles, Mamu-A*01 was significantly associated with lower set-point viral load and prolonged survival time. Mamu-A*1303 was associated with longer survival and a "novel" Mhc class I allele with lower set-point viral load. The alleles are frequent in rhesus macaques of Indian origin (12-22%). In addition, survival probability of individual SIV-infected rhesus monkeys increased with their number of alleles considered to be associated with longer survival. The results contribute to improve the interpretation and quality of preclinical studies in rhesus monkeys.  相似文献   

17.
18.
19.
Genetic variation within the HLA-B locus has the strongest impact on HIV disease progression of any polymorphisms within the human genome. However, identifying the exact mechanism involved is complicated by several factors. HLA-Bw4 alleles provide ligands for NK cells and for CD8 T cells, and strong linkage disequilibrium between HLA class I alleles complicates the discrimination of individual HLA allelic effects from those of other HLA and non-HLA alleles on the same haplotype. Here, we exploit an experiment of nature involving two recently diverged HLA alleles, HLA-B*42:01 and HLA-B*42:02, which differ by only a single amino acid. Crucially, they occur primarily on identical HLA class I haplotypes and, as Bw6 alleles, do not act as NK cell ligands and are therefore largely unconfounded by other genetic factors. We show that in an outbred cohort (n = 2,093) of HIV C-clade-infected individuals, a single amino acid change at position 9 of the HLA-B molecule critically affects peptide binding and significantly alters the cytotoxic T lymphocyte (CTL) epitopes targeted, measured directly ex vivo by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay (P = 2 × 10−10) and functionally through CTL escape mutation (P = 2 × 10−8). HLA-B*42:01, which presents multiple Gag epitopes, is associated with a 0.52 log10 lower viral-load set point than HLA-B*42:02 (P = 0.02), which presents no p24 Gag epitopes. The magnitude of this effect from a single amino acid difference in the HLA-A*30:01/B*42/Cw*17:01 haplotype is equivalent to 75% of that of HLA-B*57:03, the most protective HLA class I allele in this population. This naturally controlled experiment represents perhaps the clearest demonstration of the direct impact of a particular HIV-specific CTL on disease control.  相似文献   

20.

Background

Kazakhstan has been inhabited by different populations, such as the Kazakh, Kyrgyz, Uzbek and others. Here we investigate allelic and haplotypic polymorphisms of human leukocyte antigen (HLA) genes at DRB1, DQA1 and DQB1 loci in the Kazakh ethnic group, and their genetic relationship between world populations.

Methodology/Principal Findings

A total of 157 unrelated Kazakh ethnic individuals from Astana were genotyped using sequence based typing (SBT-Method) for HLA-DRB1, -DQA1 and -DQB1 loci. Allele frequencies, neighbor-joining method, and multidimensional scaling analysis have been obtained for comparison with other world populations. Statistical analyses were performed using Arlequin v3.11. Applying the software PAST v. 2.17 the resulting genetic distance matrix was used for a multidimensional scaling analysis (MDS). Respectively 37, 17 and 19 alleles were observed at HLA-DRB1, -DQA1 and -DQB1 loci. The most frequent alleles were HLA-DRB1*07:01 (13.1%), HLA-DQA1*03:01 (13.1%) and HLA-DQB1*03:01 (17.6%). In the observed group of Kazakhs DRB1*07:01-DQA1*02:01-DQB1*02:01 (8.0%) was the most common three loci haplotype. DRB1*10:01-DQB1*05:01 showed the strongest linkage disequilibrium. The Kazakh population shows genetic kinship with the Kazakhs from China, Uyghurs, Mongolians, Todzhinians, Tuvinians and as well as with other Siberians and Asians.

Conclusions/Significance

The HLA-DRB1, -DQA1and -DQB1 loci are highly polymorphic in the Kazakh population, and this population has the closest relationship with other Asian and Siberian populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号