首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of Fe(2+) and other divalent transition metal ions across the intestinal brush border membrane (BBM) was investigated using brush border membrane vesicles (BBMVs) as a model. This transport is an energy-independent, protein-mediated process. The divalent metal ion transporter of the BBM is a spanning protein, very likely a protein channel, that senses the phase transition of the BBM, as indicated by a break in the Arrhenius plot. The transporter has a broad substrate range that includes Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). Under physiological conditions the transport of divalent metal ions is proton-coupled, leading to the acidification of the internal cavity of BBMVs. The divalent metal ion transporter can be solubilized in excess detergent (30 mM diheptanoylphosphatidylcholine or 1% Triton X-100) and reconstituted into an artificial membrane system by detergent removal. The reconstituted membrane system showed metal ion transport characteristics similar to those of the original BBMVs. The properties of the protein described here closely resemble those of the proton-coupled divalent cation transporter (DCT1, Nramp2) described by, Nature. 388:482-488). We may conclude that a protein of the Nramp family is present in the BBM, facilitating the transport of Fe(2+) and other divalent transition metal ions.  相似文献   

2.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

3.
Miyoshi D  Nakao A  Toda T  Sugimoto N 《FEBS letters》2001,496(2-3):128-133
The thermodynamic parameters of an antiparallel G-quartet formation of d(G4T4G4) with 1 mM divalent cation (Mg(2+), Ca(2+), Mn(2+), Co(2+), and Zn(2+)) were obtained. The thermodynamic parameters showed that the divalent cation destabilizes the antiparallel G-quartet of d(G4T4G4) in the following order: Zn(2+)>Co(2+)>Mn(2+)>Mg(2+)>Ca(2+). In addition, a higher concentration of a divalent cation induced a transition from an antiparallel to a parallel G-quartet structure. These results indicate that these divalent cations are a good tool for regulating the G-quartet structures.  相似文献   

4.
The identity of the physiological metal cofactor for human methionine aminopeptidase-2 (MetAP2) has not been established. To examine this question, we first investigated the effect of eight divalent metal ions, including Ca(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+), on recombinant human methionine aminopeptidase apoenzymes in releasing N-terminal methionine from three peptide substrates: MAS, MGAQFSKT, and (3)H-MASK(biotin)G. The activity of MetAP2 on either MAS or MGAQFSKT was enhanced 15-25-fold by Co(2+) or Mn(2+) metal ions in a broad concentration range (1-1000 microM). In the presence of reduced glutathione to mimic the cellular environment, Co(2+) and Mn(2+) were also the best stimulators (approximately 30-fold) for MetAP2 enzyme activity. To determine which metal ion is physiologically relevant, we then tested inhibition of intracellular MetAP2 with synthetic inhibitors selective for MetAP2 with different metal cofactors. A-310840 below 10 microM did not inhibit the activity of MetAP2-Mn(2+) but was very potent against MetAP2 with other metal ions including Co(2+), Fe(2+), Ni(2+), and Zn(2+) in the in vitro enzyme assays. In contrast, A-311263 inhibited MetAP2 with Mn(2+), as well as Co(2+), Fe(2+), Ni(2+), and Zn(2+). In cell culture assays, A-310840 did not inhibit intracellular MetAP2 enzyme activity and did not inhibit cell proliferation despite its ability to permeate and accumulate in cytosol, while A-311263 inhibited both intracellular MetAP2 and proliferation in a similar concentration range, indicating cellular MetAP2 is functioning as a manganese enzyme but not as a cobalt, zinc, iron, or nickel enzyme. We conclude that MetAP2 is a manganese enzyme and that therapeutic MetAP2 inhibitors should inhibit MetAP2-Mn(2+).  相似文献   

5.
NRAMP2 (natural resistance-associated macrophage protein 2)/DMT1 (divalent metal transporter 1) is a divalent metal transporter conserved from prokaryotes to higher eukaryotes that exhibits an unusually broad substrate range, including Fe(2+), Zn(2+), Mn(2+), Cu(2+), Cd(2+), Co(2+), Ni(2+), and Pb(2+), and mediates active proton-coupled transport. Recently, it has been shown that the microcytic anemia (mk) mouse and the Belgrade (b) rat, which have inherited defects in iron transport that result in iron deficiency anemia, have the same missense mutation (G185R) in Nramp2. These findings strongly suggested that NRAMP2 is the apical membrane iron transporter in intestinal epithelial cells and the endosomal iron transporter in transferrin cycle endosomes of other cells. To investigate the cellular functions of NRAMP2, we generated a polyclonal antibody against the N-terminal cytoplasmic domain of human NRAMP2. The affinity-purified anti-NRAMP2 N-terminal antibody recognized a 90-116-kDa membrane-associated protein, and this band was shifted to 50 kDa by deglycosylation with peptide N-glycosidase F. Subcellular fractionation revealed that NRAMP2 co-sedimented with the late endosomal and lysosomal membrane proteins and LAMP-1 (lysosome-associated membrane protein 1), but not with the transferrin receptor in early endosomes. The intracellular localization of endogenous NRAMP2 and recombinant green fluorescent protein (GFP)-NRAMP2 was examined by immunofluorescence staining and by native fluorescence of GFP, respectively. Both endogenous and GFP-NRAMP2 were detected in vesicular structures and were colocalized with LAMP-2, but not with EEA1 (early endosome antigen 1) or the transferrin receptor. These results indicated that NRAMP2 is localized to the late endosomes and lysosomes, where NRAMP2 may function to transfer the endosomal free Fe(2+) into the cytoplasm in the transferrin cycle.  相似文献   

6.
Emerging mechanisms for heavy metal transport in plants   总被引:49,自引:0,他引:49  
Heavy metal ions such as Cu(2+), Zn(2+), Mn(2+), Fe(2+), Ni(2+) and Co(2+) are essential micronutrients for plant metabolism but when present in excess, these, and non-essential metals such as Cd(2+), Hg(2+) and Pb(2+), can become extremely toxic. Thus mechanisms must exist to satisfy the requirements of cellular metabolism but also to protect cells from toxic effects. The mechanisms deployed in the acquisition of essential heavy metal micronutrients have not been clearly defined although a number of genes have now been identified which encode potential transporters. This review concentrates on three classes of membrane transporters that have been implicated in the transport of heavy metals in a variety of organisms and could serve such a role in plants: the heavy metal (CPx-type) ATPases, the natural resistance-associated macrophage protein (Nramp) family and members of the cation diffusion facilitator (CDF) family. We aim to give an overview of the main features of these transporters in plants in terms of structure, function and regulation drawing on information from studies in a wide variety of organisms.  相似文献   

7.
We recently identified in a proteomic screen a novel synaptic vesicle membrane protein of 31 kDa (SV31) of unknown function. According to its membrane topology and its phylogenetic relation SV31 may function as a vesicular transporter. Based on its amino acid sequence similarity to a prokaryotic heavy metal ion transporter we analyzed its metal ion-binding properties and show that recombinant SV31 binds the divalent cations Zn(2+) and Ni(2+) and to a minor extent Cu(2+), but not Fe(2+), Co(2+), Mn(2+), or Ca(2+). Zn(2+)-binding of SV31 in viable cells was verified following heterologous transfection of pheochromocytoma cells 12 (PC12) with recombinant red fluorescent SV31 (SV31-RFP) and the fluorescent zinc indicator FluoZin-3. Sucrose density gradient fractionation of SV31-RFP-transfected PC12 cells revealed a partial overlap of SV31-RFP with synaptic-like vesicle markers and the early endosome marker rab5. Immunocytochemical analysis demonstrated a punctuate distribution in the cell soma and in neuritic processes and in addition in a compartment in vicinity to the plasma membrane that was immunopositive also for synaptosomal-associated protein 25 (SNAP-25) and syntaxin1A. Our data suggest that SV31 represents a novel Zn(2+) -binding protein that in PC12 cells is targeted to endosomes and subpopulations of synaptic-like microvesicles.  相似文献   

8.
9.
Five metallic cations (Fe(3+), Cr(3+), Ca(2+), Mg(2+), Mn(2+); concentration range, 1.85 x 10(-4) to 37 x 10(-4)m) were incorporated individually as chlorides into nutrient broth and agar media used for the recovery of phenol-treated Escherichia coli. The effects observed varied with the concentration and the ionic species. In nutrient agar, Fe(3+) and Cr(3+) were generally beneficial but were toxic at 37 x 10(-4)m. Of the divalent ions tested, Ca(2+) and Mg(2+) usually gave higher counts in nutrient broth, except at a concentration of 9.25 x 10(-4)m, whereas the effect of Mn(2+) was rather variable. Two possible explanations are suggested to explain these effects. Toxic materials may be removed from the media by the precipitates formed on the addition of Fe(3+) or Cr(3+), or, in the case of the divalent ions, the integrity of the bacterial cell membranes may be maintained.  相似文献   

10.
Shim H  Raushel FM 《Biochemistry》2000,39(25):7357-7364
The active site of the bacterial phosphotriesterase (PTE) from Pseudomonas diminuta contains two divalent metal ions and a carboxylated lysine residue. The native enzyme contains two Zn(2+) ions, which can be replaced with Co(2+), Cd(2+), Ni(2+), or Mn(2+) without loss of catalytic activity. Carbon dioxide reacts with the side chain of lysine-169 to form a carbamate functional group within the active site, which then serves as a bridging ligand to the two metal ions. The activation of apo-PTE using variable concentrations of divalent metal ions and bicarbonate was measured in order to establish the mechanism by which the active site of PTE is self-assembled. The time courses for the activation of apo-PTE are pseudo-first-order, and the observed rate constants are directly proportional to the concentration of bicarbonate. In contrast, the apparent rate constants for the activation of apo-PTE decrease as the concentrations of the divalent cations are increased and then become constant at higher concentrations of the divalent metal ions. These results are consistent with a largely ordered kinetic mechanism for the assembly of the binuclear metal center where CO(2)/bicarbonate reacts with the apo-PTE prior to the binding of the two metal ions. When apo-PTE is titrated with 0-8 equiv of Co(2+), Cd(2+), or Zn(2+), the concentration of activated enzyme increases linearly until 2 equiv of metal ion is added and then remains constant at elevated levels of the divalent cations. These results are consistent with the synergistic binding of the two metal ions to the active site, and thus the second metal ion binds more tightly to the protein than does the first metal ion. Measurement of the mean dissociation constant indicates that metal binding to the binuclear metal center is strong [(K(alpha)K(beta))(1/2) = 6.0 x 10(-)(11) M and k(off) = 1.5 x 10(-)(3) min(-)(1) for Zn(2+)]. The removal of the carbamate bridge through the mutagenesis of Lys-169 demonstrates that the carbamate bridge is required for both efficient catalysis and overall stability of the metal center.  相似文献   

11.
Cloning and characterization of a novel Mg(2+)/H(+) exchanger.   总被引:9,自引:0,他引:9       下载免费PDF全文
Cellular functions require adequate homeostasis of several divalent metal cations, including Mg(2+) and Zn(2+). Mg(2+), the most abundant free divalent cytoplasmic cation, is essential for many enzymatic reactions, while Zn(2+) is a structural constituent of various enzymes. Multicellular organisms have to balance not only the intake of Mg(2+) and Zn(2+), but also the distribution of these ions to various organs. To date, genes encoding Mg(2+) transport proteins have not been cloned from any multicellular organism. We report here the cloning and characterization of an Arabidopsis thaliana transporter, designated AtMHX, which is localized in the vacuolar membrane and functions as an electrogenic exchanger of protons with Mg(2+) and Zn(2+) ions. Functional homologs of AtMHX have not been cloned from any organism. Ectopic overexpression of AtMHX in transgenic tobacco plants render them sensitive to growth on media containing elevated levels of Mg(2+) or Zn(2+), but does not affect the total amounts of these minerals in shoots of the transgenic plants. AtMHX mRNA is mainly found at the vascular cylinder, and a large proportion of the mRNA is localized in close association with the xylem tracheary elements. This localization suggests that AtMHX may control the partitioning of Mg(2+) and Zn(2+) between the various plant organs.  相似文献   

12.
Binding of bivalent cations by xanthan in aqueous solution   总被引:2,自引:0,他引:2  
The interaction between xanthan and selected bivalent cations (Ca(2+), Mg(2+), Mn(2+), Fe(2+), Cu(2+), Zn(2+), Cd(2+) and Pb(2+)) was studied by means of conductometry, viscometry, and nuclear magnetic resonance spectroscopy. Xanthan from Xanthomonas campestris was studied in comparison with dextran from Leuconostoc mesenteroides. While dextran does not develop specific interactions with the bivalent cations, the analysis of the experimental data shows that xanthan chains (M(n) approximately 1.4x10(5) to 2.9x10(6)g/mol) reversibly bind Me(2+) species in aqueous solution at pH 6. Conductometric and viscometric titrations show that a single bivalent cation forms a complex which involves two disaccharide units of the main chain together with two side chains. Based on dipolar magnetic interactions between Mn(2+) and individual carbon positions of xanthan, a possible structure of a chelate-like complex is proposed which involves the pyruvate units at the terminal ends of the side chains as the main binding sites. According to the stoichiometric relation between cations and disaccharide units, a single bivalent cation is bound between the terminal ends of two side chains, leading to an intramolecular cross-link and a reduced hydrodynamic radius of the overall macromolecule. The results indicate that heavy metal ions (Cd(2+) and Pb(2+)) link stronger to the xanthan chain than lighter cations (Ca(2+) and Mg(2+)), a fact which may be of ecological relevance.  相似文献   

13.
Danel F  Paetzel M  Strynadka NC  Page MG 《Biochemistry》2001,40(31):9412-9420
The factors influencing the oligomerization state of OXA-10 and OXA-14 class D beta-lactamases in solution have been investigated. Both enzymes were found to exist as an equilibrium mixture of a monomer and dimer, with a K(d) close to 40 microM. The dimeric form was stabilized by divalent metal cations. The ability of different metal ions to stabilize the dimer was in the following order: Cd(2+) > Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) > Mn(2+) > Ca(2+) > Mg(2+). The apparent K(d)s describing the binding of Zn(2+) and Cd(2+) cations to the OXA-10 dimer were 7.8 and 5.7 microM, respectively. The metal ions had a profound effect on the thermal stability of the protein complex observed by differential scanning calorimetry. The enzyme showed a sharp transition with a T(m) of 58.7 degrees C in the absence of divalent cations, and an equally sharp transition with a T(m) of 78.4 degrees C in the presence of a saturating concentration of the divalent cation. The thermal transition observed at intermediate concentrations of divalent metal ions was rather broad and lies between these two extremes of temperature. The equilibrium between the monomer and dimer is dependent on pH, and the optimum for the formation of the dimer shifted from pH 6.0 in the absence of divalent cations to pH 7.5 at saturating concentrations. The beta-lactamase activity increased approximately 2-fold in the presence of saturating concentrations of zinc and cadmium ions. Reaction with beta-lactams caused a shift in the equilibrium toward monomer formation, and thus an apparent inactivation, but the divalent cations protected against this effect.  相似文献   

14.
15.
Cr(3+), similar to Fe(3+), is transported into cells primarily via endocytosis as the metal-transferrin complex. As Cr(3+) ions are not readily reduced under biological conditions, the ion cannot be transported from endosomes by the same mechanism as iron that utilized divalent metal ion transporters. Cr(3+) has been hypothesized to potentially be transported as small ligand complexes with a free carboxylate functionality by monocarboxylate transporters (MCT), in a similar fashion to that proposed for Al(3+). Consequently, mouse C2C12 muscle cells were utilized to determine if Cr(3+) is potentially transported by MCT by examining the effects of MCT inhibitors on Cr and Fe transport and subcellular distribution when the metals are added as their transferrin complexes. The results suggest that Cr is not primarily transported by MCT from the endosomes to the cytosol, and that another mechanism for this transport needs to be identified.  相似文献   

16.
Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co(2+), Cu(2+), Mn(2+), Ni(2+), and Zn(2+) and the non-essential divalent cation Cd(2+) in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5?μM Cd(2+), 2?μM Co(2+), 0.5?μM Cu(2+), 500?μM Mn(2+), 1?μM Ni(2+), and 18?μM Zn(2+). Cells exposed to these non-toxic concentrations with combinations of Zn(2+) and Cd(2+), Zn(2+) and Co(2+), Zn(2+) and Cu(2+) or Zn(2+) and Ni(2+), had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500?μM Mn(2+) showed similar growth compared to the untreated controls. Metal levels were measured after one and 72?h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using (65)Zn showed that after 72?h of exposure Zn(2+) uptake was reduced by most metals particularly 0.5?μM Cd(2+), while 2?μM Co(2+) increased Zn(2+) uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.  相似文献   

17.
Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. Members of the CDF family are ubiquitously found in all living entities and show principal selectivity for Zn(2+), Mn(2+), and Fe(2+). Little is known regarding metal selectivity determinants of CDFs. We identified a novel cereal member of CDFs in barley, termed HvMTP1, that localizes to the vacuolar membrane. Unlike its close relative AtMTP1, which is highly selective for Zn(2+), HvMTP1 exhibits selectivity for both Zn(2+) and Co(2+) as assessed by its ability to suppress yeast mutant phenotypes for both metals. Expression of HvMTP1/AtMTP1 chimeras in yeast revealed a five-residue sequence within the AtMTP1 N-segment of the His-rich intracytoplasmic loop that confines specificity to Zn(2+). Furthermore, mutants of AtMTP1 generated through random mutagenesis revealed residues embedded within transmembrane domain 3 that additionally specify the high degree of Zn(2+) selectivity. We propose that the His-rich loop, which might play a role as a zinc chaperone, determines the identity of the metal ions that are transported. The residues within transmembrane domain 3 can also influence metal selectivity, possibly through conformational changes induced at the cation transport site located within the membrane or at the cytoplasmic C-terminal domain.  相似文献   

18.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

19.
Yang Z  Hayes JJ 《Biochemistry》2011,50(46):9973-9981
We previously reported that reconstituted nucleosomes undergo sequence-dependent translational repositioning upon removal of the core histone tail domains under physiological conditions, indicating that the tails influence the choice of position. We report here that removal of the core histone tail domains increases the exposure of the DNA backbone in nucleosomes to hydroxyl radicals, a nonbiased chemical cleavage reagent, indicative of an increase in the motility of the DNA on the histone surface. Moreover, we demonstrate that the divalent cations Mg(2+) and Ca(2+) can replace the role of the tail domains with regard to stabilization of histone-DNA interactions within the nucleosome core and restrict repositioning of nucleosomes upon tail removal. However, when nucleosomes were incubated with Mg(2+) after tail removal, the original distribution of translational positions was not re-established, indicating that divalent cations increase the energy barrier between translational positions rather than altering the free energy differences between positions. Interestingly, other divalent cations such as Zn(2+), Fe(2+), Co(2+), and Mn(2+) had little or no effect on the stability of histone-DNA interactions within tailless nucleosomes. These results support the idea that specific binding sites for Mg(2+) and Ca(2+) ions exist within the nucleosome and play a critical role in nucleosome stability that is partially redundant with the core histone tail domains.  相似文献   

20.
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号