首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer membrane proteins (OMPs) of Gram-negative bacteria have a variety of functions including passive transport, active transport, catalysis, pathogenesis and signal transduction. Whilst the structures of ∼ 25 OMPs are currently known, there is relatively little known about their dynamics in different environments. The outer membrane protein, OmpA from Escherichia coli has been studied extensively in different environments both experimentally and computationally, and thus provides an ideal test case for the study of the dynamics and environmental interactions of outer membrane proteins. We review molecular dynamics simulations of OmpA and its homologues in a variety of different environments and discuss possible mechanisms of pore gating. The transmembrane domain of E. coli OmpA shows subtle differences in dynamics and interactions between a detergent micelle and a lipid bilayer environment. Simulations of the crystallographic unit cell reveal a micelle-like network of detergent molecules interacting with the protein monomers. Simulation and modelling studies emphasise the role of an electrostatic-switch mechanism in the pore-gating mechanism. Simulation studies have been extended to comparative models of OmpA homologues from Pseudomonas aeruginosa (OprF) and Pasteurella multocida (PmOmpA), the latter model including the periplasmic C-terminal domain.  相似文献   

2.
Aquaporin-4 (AQP4) is the predominant water channel in different organs and tissues. An alteration of its physiological functioning is responsible for several disorders of water regulation and, thus, is considered an attractive target with a promising therapeutic and diagnostic potential. Molecular dynamics (MD) simulations performed on the AQP4 tetramer embedded in a bilayer of lipid molecules allowed us to analyze the role of spontaneous fluctuations occurring inside the pore. Following the approach by Hashido et al. [Hashido M, Kidera A, Ikeguchi M (2007) Biophys J 93: 373–385], our analysis on 200 ns trajectory discloses three domains inside the pore as key elements for water permeation. Herein, we describe the gating mechanism associated with the well-known selectivity filter on the extracellular side of the pore and the crucial regulation ensured by the NPA motifs (asparagine, proline, alanine). Notably, on the cytoplasmic side, we find a putative gate formed by two residues, namely, a cysteine belonging to the loop D (C178) and a histidine from loop B (H95). We observed that the spontaneous reorientation of the imidazole ring of H95 acts as a molecular switch enabling H-bond interaction with C178. The occurrence of such local interaction seems to be responsible for the narrowing of the pore and thus of a remarkable decrease in water flux rate. Our results are in agreement with recent experimental observations and may represent a promising starting point to pave the way for the discovery of chemical modulators of AQP4 water permeability.  相似文献   

3.
4.
Most current models of membrane ion channel gating are abstract compartmental models consisting of many undefined states connected by rate constants arbitrarily assigned to fit the known kinetics. In this paper is described a model with states that are defined in terms of physically plausible real systems which is capable of describing accurately most of the static and dynamic properties measured for the sodium channel of the squid axon. The model has two components. The Q-system consists of charges and dipoles that can move in response to an electric field applied across the membrane. It would contain and may compose the gating charge that is known to transfer prior to channel opening. The N-system consists of a charged group or dipole that is constrained to move only in the plane of the membrane and thus does not interact directly with the trans-membrane electric field but can interact electrostatically with the Q-system. The N-system has only two states, its resting state (channel closed) and its excited state (channel open) and its response time is very short in comparison with that of the Q-system. On depolarizing the membrane the the N-system will not make a transition to its open state until a critical amount of Q-charge transfer has occurred. Using only four adjustable parameters that are fully determined by fitting the equilibrium properties of the model to those of the sodium channel in the squid axon, the model is then able to describe with some accuracy the kinetics of channel opening and closing and includes the Cole and Moore delay. In addition to these predictions of the behaviour of assemblies of channels the model predicts some of the individual channel properties measured by patch clamp techniques.  相似文献   

5.
KcsA potassium channel belongs to a wide family of allosteric proteins that switch between closed and open states conformations in response to a stimulus, and act as a regulator of cation activity in living cells. The gating mechanism and cation selectivity of such channels have been extensively studied in the literature, with a revival emphasis these latter years, due to the publication of the crystallized structure of KcsA. Despite the increasing number of research and review papers on these topics, quantitative interpretation of these processes at the atomic scale is far from achieved. On the basis of available experimental and theoretical data, and by including our recent results, we review the progresses in this field of activity and discuss the weaknesses that should be corrected. In this spirit, we partition the channel into the filter, cavity, extra and intracellular media, in order to analyze separately the specificity of each region. Special emphasis is brought to the study of an open state for the channel and to the different properties generated by the opening. The influence of water as a structural and dynamical component of the channel properties in closed and open states, as well as in the sequential motions of the cations, is analyzed using molecular dynamics simulations and ab initio calculations. The polarization and charge transfer effects on the ions’ dynamics and kinetics are discussed in terms of partial charge models.  相似文献   

6.
One of the ultimate goals of the study on mechanosensitive (MS) channels is to understand the biophysical mechanisms of how the MS channel protein senses forces and how the sensed force induces channel gating. The bacterial MS channel MscL is an ideal subject to reach this goal owing to its resolved 3D protein structure in the closed state on the atomic scale and large amounts of electrophysiological data on its gating kinetics. However, the structural basis of the dynamic process from the closed to open states in MscL is not fully understood. In this study, we performed molecular dynamics (MD) simulations on the initial process of MscL opening in response to a tension increase in the lipid bilayer. To identify the tension-sensing site(s) in the channel protein, we calculated interaction energy between membrane lipids and candidate amino acids (AAs) facing the lipids. We found that Phe78 has a conspicuous interaction with the lipids, suggesting that Phe78 is the primary tension sensor of MscL. Increased membrane tension by membrane stretch dragged radially the inner (TM1) and outer (TM2) helices of MscL at Phe78, and the force was transmitted to the pentagon-shaped gate that is formed by the crossing of the neighboring TM1 helices in the inner leaflet of the bilayer. The radial dragging force induced radial sliding of the crossing portions, leading to a gate expansion. Calculated energy for this expansion is comparable to an experimentally estimated energy difference between the closed and the first subconductance state, suggesting that our model simulates the initial step toward the full opening of MscL. The model also successfully mimicked the behaviors of a gain of function mutant (G22N) and a loss of function mutant (F78N), strongly supporting that our MD model did simulate some essential biophysical aspects of the mechano-gating in MscL.  相似文献   

7.
A refinement protocol based on physics‐based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge‐based or implicit membrane‐based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid‐facing residues. Scoring with knowledge‐based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane‐based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models.  相似文献   

8.
Ion distribution in the selectivity filter and ion-water and ion-protein interactions of NaK channel are systematically investigated by all-atom molecular dynamics simulations, with the tetramer channel protein being embedded in a solvated phospholipid bilayer. Analysis of the simulation results indicates that K+ ions prefer to bind within the sites formed by two adjacent planes of oxygen atoms from the selectivity filter, while Na+ ions are inclined to bind to a single plane of four oxygen atoms. At the same time, both K+ and Na+ ions can diffuse in the vestibule, accompanying with movements of the water molecules confined in a complex formed by the vestibule together with four small grottos connecting to it. As a result, K+ ions show a wide range of coordination numbers (6-8), while Na+ ions display a constant coordination number of ∼ 6 in the selectivity filter, which may result in the loss of selectivity of NaK. It is also found that a Ca2+ can bind at the extracellular site as reported in the crystal structure in a partially hydrated state, or at a higher site in a full hydration state. Furthermore, the carbonyl group of Asp66 can reorient to point towards the center pore when an ion exists in the vestibule, while that of Gly65 always aligns tangentially to the channel axis, as in the crystallographic structures.  相似文献   

9.
One of the ultimate goals of the study on mechanosensitive (MS) channels is to understand the biophysical mechanisms of how the MS channel protein senses forces and how the sensed force induces channel gating. The bacterial MS channel MscL is an ideal subject to reach this goal owing to its resolved 3D protein structure in the closed state on the atomic scale and large amounts of electrophysiological data on its gating kinetics. However, the structural basis of the dynamic process from the closed to open states in MscL is not fully understood. In this study, we performed molecular dynamics (MD) simulations on the initial process of MscL opening in response to a tension increase in the lipid bilayer. To identify the tension-sensing site(s) in the channel protein, we calculated interaction energy between membrane lipids and candidate amino acids (AAs) facing the lipids. We found that Phe78 has a conspicuous interaction with the lipids, suggesting that Phe78 is the primary tension sensor of MscL. Increased membrane tension by membrane stretch dragged radially the inner (TM1) and outer (TM2) helices of MscL at Phe78, and the force was transmitted to the pentagon-shaped gate that is formed by the crossing of the neighboring TM1 helices in the inner leaflet of the bilayer. The radial dragging force induced radial sliding of the crossing portions, leading to a gate expansion. Calculated energy for this expansion is comparable to an experimentally estimated energy difference between the closed and the first subconductance state, suggesting that our model simulates the initial step toward the full opening of MscL. The model also successfully mimicked the behaviors of a gain of function mutant (G22N) and a loss of function mutant (F78N), strongly supporting that our MD model did simulate some essential biophysical aspects of the mechano-gating in MscL.  相似文献   

10.
This study was undertaken to investigate the proposed in vivo pore function of PhoE protein, an Escherichia coli K12 outer membrane protein induced by growth under phosphate limitation, and to compare it with those of the constitutive pore proteins OmpF and OmpC. Appropriate mutant strains were constructed containing only one of the proteins PhoE, OmpF or OmpC, or none of these proteins at all. By measuring rates of nutrient uptake at low solute concentrations, the proposed pore function of PhoE protein was confirmed as the presence of the protein facilitates the diffusion of Pi through the outer membrane, such that a pore protein deficient strain behaves as a Km mutant. Comparison of the rates of permeation of Pi, glycerol 3-phosphate and glucose 6-phosphate through pores formed by PhoE, OmpF and OmpC proteins shows that PhoE protein is the most effective pore in facilitating the diffusion of Pi and phosphorus-containing compounds. The three types of pores were about equally effective in facilitating the permeation of glucose and arsenate. Possible reasons for the preference for Pi and Pi-containing solutes are discussed.  相似文献   

11.
There is emerging evidence from functional analyses and molecular research that the role of ion channels in cell physiology is not only determined by the pore-forming subunits but also depends on their molecular environment. Accordingly, the local and temporal specificity of channel-mediated signal transduction is thought to result from association of these integral membrane proteins with distinct sets of partner proteins or from their assembly into stable macromolecular complexes. As yet, however, the molecular environments of most ion channels have escaped direct investigation, mostly because of technical limitations that precluded their comprehensive molecular analysis. Recent advances in proteomic technologies promoted an experimental workflow that combines affinity purification of readily solubilized protein complexes with quantitative high-resolution mass spectrometry and that offers access to channel-associated protein environments. We will discuss advantages and limitations of this proteomic approach, as well as the results obtained from its application to several types of ion channels including Cav channels, Kv channels, HCN channels, AMPA-type glutamate receptors and GABA(B) receptors. The respective results indicate that the approach provides unbiased and comprehensive information on (i) the subunit composition of channel cores including identification of auxiliary subunits, on (ii) the assembly of channel cores into 'signaling entities' and on (iii) integration of channels into extended protein networks. Thus, quantitative proteomics opens a new window for the investigation of ion channels and their function in the context of various types of cell.  相似文献   

12.
Qiulin Tan 《FEBS letters》2010,584(8):1602-1608
The chlorella virus-encoded Kcv can form a homo-tetrameric potassium channel in lipid membranes. This miniature peptide can be synthesized in vitro, and the tetramer purified from the SDS-polyacrylamide gel retains the K+ channel functionality. Combining this capability with the mass-tagging method, we propose a simple, straightforward approach that can generically manipulate individual subunits in the tetramer, thereby enabling the detection of contribution from individual subunits to the channel functions. Using this approach, we showed that the structural change in the selectivity filter from only one subunit is sufficient to cause permanent channel inactivation (“all-or-none” mechanism), whereas the mutation near the extracellular entrance additively modifies the ion permeation with the number of mutant subunits in the tetramer (“additive” mechanism).  相似文献   

13.
Measurement of tracer ion flux from or into a collection of closed membrane structures (CMS) constitutes a broadly applicable technique for studying ion channel gating by specialized gating molecules in biological membranes. The amplitudes for the flux process reflect the overall change in tracer content due to flux during a period in which channels on at least some of the CMS were open. In practice, the attainment of a time-invariant, finite overall tracer content, indicating a cessation of flux, need not imply that flux has reached completion, i.e., that the CMS internal and external tracer concentrations have fully reached equilibrium. Less than maximum flux amplitudes arise when binding of control ligands leads to an inhibition or inactivation of the channel gating molecules prior to a complete equilibration of tracer. Analysis of the dependence of the flux amplitudes on control ligand concentration permits determination of characteristic parameters of the CMS that may vary with the methods of preparation (e.g., the distributions of CMS size and CMS content of gating units). Knowledge of these parameters in turn permits evaluation of the mean single channel flux amplitude contribution, which is functionally dependent on the rate constant ratio (k'eff/ki), where k'eff and ki are, respectively, the effective rate constants for tracer flux and for gating unit inactivation.  相似文献   

14.
电压依赖性离子通道门控的分子机制   总被引:5,自引:0,他引:5  
Lu GW 《生理科学进展》1997,28(4):306-310
50年代Hodgkin和Huxley双通道模型及其激活与失活学说,正逐步被80年代以来的分子生物学和电生理学研究所证实。Na^+、K^+离子通道的激活主要决定于高度保守的带正电荷氨基酸残基密集的S4段,由膜内向膜外方向的拧改锥样旋转。Na^+通道的失活主要与其Ⅲ-Ⅳ功能区之间的胞内连结襻的“铰链盖”样运动有关;K^+通的失活分N-、C-、P-三型,分别发生在N-、C-末端和P区,其N型失活与N-末  相似文献   

15.
Voltage gating in the mitochondrial channel,VDAC   总被引:1,自引:0,他引:1  
  相似文献   

16.
The structures of three bacterial outer membrane proteins (OmpA, OmpX and PagP) have been determined by both X-ray diffraction and NMR. We have used multiple (7 × 15 ns) MD simulations to compare the conformational dynamics resulting from the X-ray versus the NMR structures, each protein being simulated in a lipid (DMPC) bilayer. Conformational drift was assessed via calculation of the root mean square deviation as a function of time. On this basis the ‘quality’ of the starting structure seems mainly to influence the simulation stability of the transmembrane β-barrel domain. Root mean square fluctuations were used to compare simulation mobility as a function of residue number. The resultant residue mobility profiles were qualitatively similar for the corresponding X-ray and NMR structure-based simulations. However, all three proteins were generally more mobile in the NMR-based than in the X-ray simulations. Principal components analysis was used to identify the dominant motions within each simulation. The first two eigenvectors (which account for >50% of the protein motion) reveal that such motions are concentrated in the extracellular loops and, in the case of PagP, in the N-terminal α-helix. Residue profiles of the magnitude of motions corresponding to the first two eigenvectors are similar for the corresponding X-ray and NMR simulations, but the directions of these motions correlate poorly reflecting incomplete sampling on a ∼10 ns timescale.  相似文献   

17.
  1. Download : Download high-res image (312KB)
  2. Download : Download full-size image
  相似文献   

18.
Membrane protein function and stability has been shown to be dependent on the lipid environment. Recently, we developed a high-throughput computational approach for the prediction of membrane protein/lipid interactions. In the current study, we enhanced this approach with the addition of a new measure of the distortion caused by membrane proteins on a lipid bilayer. This is illustrated by considering the effect of lipid tail length and headgroup charge on the distortion caused by the integral membrane proteins MscS and FLAP, and by the voltage sensing domain from the channel KvAP. Changing the chain length of lipids alters the extent but not the pattern of distortion caused by MscS and FLAP; lipid headgroups distort in order to interact with very similar but not identical regions in these proteins for all bilayer widths investigated. Introducing anionic lipids into a DPPC bilayer containing the KvAP voltage sensor does not affect the extent of bilayer distortion.  相似文献   

19.
Potassium channels conduct K+ flow selectively across the membrane through a central pore. During a process called gating, the potassium channels undergo a conformational change that opens or closes the ion-conducting pore. The potassium channel KcsA has been structurally determined in its closed state. However, the dynamic mechanism of the gating transition of the KcsA channel is still being investigated. Here, a targeted molecular dynamics simulation up to 150 ns is performed to investigate the detailed opening process of the KcsA channel with an open Kv1.2 structure serving as the target. The channel arrived at a self-determined quasi-stable state within 60 ns. The rigid-body and hinge-bending modes are observed mixed together in the remaining 90 ns long quasi-stable state. The mixed-mode movement seems come from the competition between the helix rigidity and the biased-applied gating force.  相似文献   

20.
The prion protein (PrP) is responsible for several fatal neurodegenerative diseases via conversion from its normal to disease-related isoform. The recombinant form of the protein is typically studied to investigate the conversion process. This constructs lacks the co- and post-translational modifications present in vivo , there the protein has two N-linked glycans and is bound to the outer leaflet of the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The inherent flexibility and heterogeneity of the glycans, the plasticity of the GPI anchor, and the localization of the protein in a membrane make experimental structural characterization of biological constructs of cellular prion protein (PrPC) challenging. Yet this characterization is central in determining not only the suitability of recombinant (rec)-PrPC as a model for biological forms of the protein but also the potential role of co- and post-translational modifications on the disease process. Here, we present molecular dynamics simulations of three human prion protein constructs: (i) a protein-only construct modeling the recombinant form, (ii) a diglycosylated and soluble construct, and (iii) a diglycosylated and GPI-anchored construct bound to a lipid bilayer. We found that glycosylation and membrane anchoring do not significantly alter the structure or dynamics of PrPC, but they do appreciably modify the accessibility of the polypeptide surface PrPC. In addition, the simulations of membrane-bound PrPC revealed likely recognition domains for the disease-initiating PrPC:PrPSc (infectious and/or misfolded form of the prion protein) binding event and a potential mechanism for the observed inefficiency of conversion associated with differentially glycosylated PrP species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号