首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variations in POR, encoding NADPH-cytochrome P450 oxidoreductase (CYPOR), can diminish the function of numerous cytochromes P450, and also have the potential to block degradation of heme by heme oxygenase-1 (HO-1). Purified full-length human CYPOR, HO-1, and biliverdin reductase were reconstituted in lipid vesicles and assayed for NADPH-dependent conversion of heme to bilirubin. Naturally-occurring human CYPOR variants queried were: WT, A115V, Y181D, P228L, M263V, A287P, R457H, Y459H, and V492E. All CYPOR variants exhibited decreased bilirubin production relative to WT, with a lower apparent affinity of the CYPOR–HO-1 complex than WT. Addition of FMN or FAD partially restored the activities of Y181D, Y459H, and V492E. When mixed with WT CYPOR, only the Y181D CYPOR variant inhibited heme degradation by sequestering HO-1, whereas Y459H and V492E were unable to inhibit HO-1 activity suggesting that CYPOR variants might have differential binding affinities with redox partners. Titrating the CYPOR–HO-1 complex revealed that the optimal CYPOR:HO-1 ratio for activity was 1:2, lending evidence in support of productive HO-1 oligomerization, with higher ratios of CYPOR:HO-1 showing decreased activity. In conclusion, human POR mutations, shown to impact P450 activities, also result in varying degrees of diminished HO-1 activity, which may further complicate CYPOR deficiency.  相似文献   

2.
Y459H and V492E mutations of cytochrome P450 reductase (CYPOR) cause Antley-Bixler syndrome due to diminished binding of the FAD cofactor. To address whether these mutations impaired the interaction with drug-metabolizing CYPs, a bacterial model of human liver expression of CYP1A2 and CYPOR was implemented. Four models were generated: PORnull, PORwt, PORYH, and PORVE, for which equivalent CYP1A2 and CYPOR levels were confirmed, except for PORnull, not containing any CYPOR. The mutant CYPORs were unable to catalyze cytochrome c and MTT reduction, and were unable to support EROD and MROD activities. Activity was restored by the addition of FAD, with V492E having a higher apparent FAD affinity than Y459H. The CYP1A2-activated procarcinogens, 2-aminoanthracene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-amino-3-methylimidazo(4,5-f)quinoline, were significantly less mutagenic in PORYH and PORVE models than in PORwt, indicating that CYP1A2, and likely other drug-metabolizing CYPs, are impaired by ABS-related POR mutations as observed in the steroidogenic CYPs.  相似文献   

3.
Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.  相似文献   

4.
Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.  相似文献   

5.
Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase   总被引:1,自引:0,他引:1  
Mutations in NADPH P450 oxidoreductase (POR) cause a broad spectrum of human disease with abnormalities in steroidogenesis. We have studied the impact of P450 reductase mutations on the activity of CYP19A1. POR supported CYP19A1 activity with a calculated Km of 126 nm for androstenedione and a Vmax of 1.7 pmol/min. Mutations R457H and V492E located in the FAD domain of POR that disrupt electron transfer caused a complete loss of CYP19A1 activity. The A287P mutation of POR decreased the activities of CYP17A1 by 60-80% but had normal CYP19A1 activity. Molecular modeling and protein docking studies suggested that A287P is involved in the interaction of POR:CYP17A1 but not in the POR:CYP19A1 interaction. Mutations C569Y and V608F in the NADPH binding domain of POR had 49 and 28% of activity of CYP19A1 compared with normal reductase and were more sensitive to the amount of NADPH available for supporting CYP19A1 activity. Substitution of NADH for NADPH had a higher impact on C569Y and V608F mutants of POR. Similar effects were obtained at low/high (5.5/8.5) pH, but using octanol to limit the flux of electrons from POR to CYP19A1 inhibited activity supported by all variants. High molar ratios of KCl also reduced the CYP19A1 supporting activities of C569Y and V608F mutants of POR to a greater extent compared to normal POR and A287P mutant. Because POR supports many P450s involved in steroidogenesis, bone formation, and drug metabolism, variations in the effects of POR mutations on specific enzyme activities may explain the broad clinical spectrum of POR deficiency.  相似文献   

6.
P450 oxidoreductase (POR) is the obligatory flavoprotein intermediate that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 enzymes. Although mouse Por gene ablation causes embryonic lethality, POR missense mutations cause disordered steroidogenesis, ambiguous genitalia, and Antley-Bixler syndrome (ABS), which has also been attributed to fibroblast growth factor receptor 2 (FGFR2) mutations. We sequenced the POR gene and FGFR2 exons 8 and 10 in 32 individuals with ABS and/or hormonal findings that suggested POR deficiency. POR and FGFR2 mutations segregated completely. Fifteen patients carried POR mutations on both alleles, 4 carried mutations on only one allele, 10 carried FGFR2 or FGFR3 mutations, and 3 patients carried no mutations. The 34 affected POR alleles included 10 with A287P (all from whites) and 7 with R457H (four Japanese, one African, two whites); 17 of the 34 alleles carried 16 "private" mutations, including 9 missense and 7 frameshift mutations. These 11 missense mutations, plus 10 others found in databases or reported elsewhere, were recreated by site-directed mutagenesis and were assessed by four assays: reduction of cytochrome c, oxidation of NADPH, support of 17alpha-hydroxylase activity, and support of 17,20 lyase using human P450c17. Assays that were based on cytochrome c, which is not a physiologic substrate for POR, correlated poorly with clinical phenotype, but assays that were based on POR's support of catalysis by P450c17--the enzyme most closely associated with the hormonal phenotype--provided an excellent genotype/phenotype correlation. Our large survey of patients with ABS shows that individuals with an ABS-like phenotype and normal steroidogenesis have FGFR mutations, whereas those with ambiguous genitalia and disordered steroidogenesis should be recognized as having a distinct new disease: POR deficiency.  相似文献   

7.
The nitric-oxide synthases (NOSs) are comprised of an oxygenase domain and a reductase domain bisected by a calmodulin (CaM) binding region. The NOS reductase domains share approximately 60% sequence similarity with the cytochrome P450 oxidoreductase (CYPOR), which transfers electrons to microsomal cytochromes P450. The crystal structure of the neuronal NOS (nNOS) connecting/FAD binding subdomains reveals that the structure of the nNOS-connecting subdomain diverges from that of CYPOR, implying different alignments of the flavins in the two enzymes. We created a series of chimeric enzymes between nNOS and CYPOR in which the FMN binding and the connecting/FAD binding subdomains are swapped. A chimera consisting of the nNOS heme domain and FMN binding subdomain and the CYPOR FAD binding subdomain catalyzed significantly increased rates of cytochrome c reduction in the absence of CaM and of NO synthesis in its presence. Cytochrome c reduction by this chimera was inhibited by CaM. Other chimeras consisting of the nNOS heme domain, the CYPOR FMN binding subdomain, and the nNOS FAD binding subdomain with or without the tail region also catalyzed cytochrome c reduction, were not modulated by CaM, and could not transfer electrons into the heme domain. A chimera consisting of the heme domain of nNOS and the reductase domain of CYPOR reduced cytochrome c and ferricyanide at rates 2-fold higher than that of native CYPOR, suggesting that the presence of the heme domain affected electron transfer through the reductase domain. These data demonstrate that the FMN subdomain of CYPOR cannot effectively substitute for that of nNOS, whereas the FAD subdomains are interchangeable. The differences among these chimeras most likely result from alterations in the alignment of the flavins within each enzyme construct.  相似文献   

8.
The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp(147) and Arg(514) in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (≥90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP(+) revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ~20° compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP(+) shows movement of the Gly(631)-Asn(635) loop. In the NADP(+)-free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP(+) shows movement of the Gly(631)-Asn(635) loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly(631)-Asn(635) loop movement controls NADPH binding and NADP(+) release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners.  相似文献   

9.
Cytochrome P450 monooxygenases have been well known to be responsible for the synthesis of endogenous compounds and the metabolism of exogenous compounds in almost all living organisms, which require NADPH-cytochrome P450 oxidoreductase (POR) as an electron donor to function. In this study, a 2031 bp open reading frame of POR gene was cloned from 35-day-old Roman hen liver, encoding an enzyme of 676 amino acids. Sequence analysis showed that chicken POR shares high homology with other vertebrates PORs and possesses the conserved binding domains of FAD, FMN, and NADPH. The genomic sequences of POR genes from chicken and other four vertebrates have highly conserved exon/intron organization structure. By fusion with bacterial signal peptide, chicken POR gene was functionally expressed in E. coli membrane and showed activities in reduction of cytochrome c and oxidation of NADPH. The Km values for cytochrome c and NADPH were 21.9 ± 2.3 μM and 2.4 ± 0.3 μM respectively. A Ping-Pong mechanism was proposed for chicken POR.  相似文献   

10.
NADPH-cytochrome P450 oxidoreductase (CYPOR) catalyzes the transfer of electrons to all known microsomal cytochromes P450. A CYPOR variant, with a 4-amino acid deletion in the hinge connecting the FMN domain to the rest of the protein, has been crystallized in three remarkably extended conformations. The variant donates an electron to cytochrome P450 at the same rate as the wild-type, when provided with sufficient electrons. Nevertheless, it is defective in its ability to transfer electrons intramolecularly from FAD to FMN. The three extended CYPOR structures demonstrate that, by pivoting on the C terminus of the hinge, the FMN domain of the enzyme undergoes a structural rearrangement that separates it from FAD and exposes the FMN, allowing it to interact with its redox partners. A similar movement most likely occurs in the wild-type enzyme in the course of transferring electrons from FAD to its physiological partner, cytochrome P450. A model of the complex between an open conformation of CYPOR and cytochrome P450 is presented that satisfies mutagenesis constraints. Neither lengthening the linker nor mutating its sequence influenced the activity of CYPOR. It is likely that the analogous linker in other members of the diflavin family functions in a similar manner.NADPH-cytochrome P450 oxidoreductase (CYPOR)4 is a ∼78-kDa, multidomain, microsomal diflavin protein that shuttles electrons from NADPH → FAD → FMN to members of the ubiquitous cytochrome P450 superfamily (1, 2). In humans, the cytochromes P450 (cyt P450) are one of the most important families of proteins involved in the biosynthesis and degradation of a vast number of endogenous compounds and the detoxification and biodegradation of most foreign compounds. CYPOR also donates electrons to heme oxygenase (3), cytochrome b5 (4), and cytochrome c (5).The FAD receives a hydride anion from the obligate two electron donor NADPH and passes the electrons one at a time to FMN. The FMN then donates electrons to the redox partners of CYPOR, again one electron at a time. Cyt P450 accepts electrons at two different steps in its complex reaction cycle. Ferric cyt P450 is reduced to the ferrous protein, and oxyferrous cyt P450 receives the second of the two electrons to form the peroxo (Fe+3OO)2- cyt P450 intermediate (6). In vivo, CYPOR cycles between the one- and three-electron reduced forms (7, 8). Although the one-electron reduced form is an air-stable, neutral blue semiquinone (FMNox/sq, -110 mV), it is the FMN hydroquinone (FMNsq/hq, -270 mV), not the semiquinone, that donates an electron to its redox partners (811). CYPOR is the prototype of the mammalian diflavin-containing enzyme family, which includes nitric-oxide synthase (12), methionine synthase reductase (13, 14), and a novel reductase expressed in the cytoplasm of certain cancer cells (15). CYPOR is also a target for anticancer therapy, because it reductively activates anticancer prodrugs (16).CYPOR consists of an N-terminal single α-helical transmembrane anchor (∼6 kDa) responsible for its localization to the endoplasmic reticulum and the soluble cytosolic portion (∼66 kDa) capable of reducing cytochrome c. Crystal structures of the soluble form of the wild-type and several mutant CYPORs are available (17, 18). The first ∼170 amino acids of the soluble domain are highly homologous to flavodoxin and bind FMN (FMN domain), whereas the C-terminal portion of the soluble protein consists of a FAD- and NADPH-binding domain with sequence and structural similarity to ferredoxin-NADP+ oxidoreductase (FAD domain). A connecting domain, possessing a unique sequence and structure, joins the FMN and FAD domains and is partly responsible for the relative orientation of the FMN and FAD domains. In the crystal structure, a convex anionic surface surrounds FMN. In the wild-type crystal structure, the two flavin isoalloxazine rings are in van der Waals contact, poised for efficient interflavin electron transfer (17). Based on the juxtaposition of the two flavins, an extrinsic electron transfer rate of ∼1010 s-1 is predicted (19). However, the experimentally observed electron transfer rate between the two flavins is 30–55 s-1 (20, 21). This modest rate and slowing of electron transfer in a viscous solvent (75% glycerol) suggest that interflavin electron transfer is likely conformationally gated. Moreover, the “closed” crystal structure, in which the flavins are in contact, is difficult to reconcile with mutagenesis studies that indicate the acidic amino acid residues on the surface near FMN are involved in interacting with cyt P450 (22). The first structural insight into how cyt P450 might interact with the FMN domain of CYPOR was provided by the crystal structure of a complex between the heme and FMN-containing domains of cyt P450 BM3 (23). In this complex, the methyl groups of FMN are oriented toward the heme on the proximal surface of cyt P450 BM3. Considered together, these three observations, the slow interflavin electron transfer, the mutagenesis data, and the structure of the complex between the heme and FMN domains of cyt P450 BM3, suggest that CYPOR will undergo a large conformational rearrangement in the course of shuttling electrons from NADPH to cyt P450. In addition, crystal structures of various CYPOR variants indicate that the FMN domain is highly mobile with respect to the rest of the molecule (18).Consideration of how the reductase would undergo a reorientation to interact with its redox partners led us to hypothesize the existence of a structural element in the reductase that would regulate the conformational changes and the relative dynamic motion of the domains. Our attention focused on the hinge region between the FMN and the connecting domain, because it is often disordered and highly flexible in the crystal structure (supplemental Fig. S1). The length and sequence of the hinge have been altered by site-directed mutagenesis, and the effects of the mutations on the catalytic properties of each mutant have been determined. The results demonstrate that lengthening the linker or altering its sequence do not modify the properties of CYPOR. In contrast, deletion of four amino acids markedly disrupts electron transfer from FAD to FMN, whereas the ability of the FMN domain to donate electrons to cyt P450 remains intact. The hinge deletion variant has been crystallized in three “open” conformations capable of interacting with cyt P450.  相似文献   

11.
The NADPH‐cytochrome P450 oxidoreductase (CYPOR) enzyme is a membrane‐bound protein and contains both FAD and FMN cofactors. The enzyme transfers two electrons, one at a time, from NADPH to cytochrome P450 enzymes to function in the enzymatic reactions. We previously expressed in Escherichia coli the membrane‐bound CYPOR (flAnCYPOR) from Anopheles minimus mosquito. We demonstrated the ability of flAnCYPOR to support the An. minimus CYP6AA3 enzyme activity in deltamethrin degradation in vitro. The present study revealed that the flAnCYPOR purified enzyme, analyzed by a fluorometric method, readily lost its flavin cofactors. When supplemented with exogenous flavin cofactors, the activity of flAnCYPOR‐mediated cytochrome c reduction was increased. Mutant enzymes containing phenylalanine substitutions at leucine residues 86 and 219 were constructed and found to increase retention of FMN cofactor in the flAnCYPOR enzymes. Kinetic study by measuring cytochrome c–reducing activity indicated that the wild‐type and mutant flAnCYPORs followed a non‐classical two‐site Ping‐Pong mechanism, similar to rat CYPOR. The single mutant (L86F or L219F) and double mutant (L86F/L219F) flAnCYPOR enzymes, upon reconstitution with the An. minimus cytochrome P450 CYP6AA3 and a NADPH‐regenerating system, increased CYP6AA3‐mediated deltamethrin degradation compared to the wild‐type flAnCYPOR enzyme. The increased enzyme activity could illustrate a more efficient electron transfer of AnCYPOR to CYP6AA3 cytochrome P450 enzyme. Addition of extra flavin cofactors could increase CYP6AA3‐mediated activity supported by wild‐type and mutant flAnCYPOR enzymes. Thus, both leucine to phenylalanine substitutions are essential for flAnCYPOR enzyme in supporting CYP6AA3‐mediated metabolism. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
13.
Recombinant house fly (Musca domestica) cytochrome P450 reductase has been purified by anion exchange and affinity chromatography. Steady-state kinetics of cytochrome c reductase activity revealed a random Bi-Bi mechanism with formation of a ternary P450 reductase-NADPH-electron acceptor complex as catalytic intermediate. NADP(H) binding is essential for fast hydride ion transfer to FAD, as well as for electron transfer from FMN to cytochrome c. Reduced cytochrome c had no effect on the enzyme activity, while NADP+ and 2'-AMP inhibited P450 reductase competitively with respect to NADPH and noncompetitively with respect to cytochrome c. The affinity of the P450 reductase to NADPH is 10 times higher than to NADP+ (Kd of 0.31 and 3.3 microM, respectively). Such an affinity change during catalysis could account for a +30 mV shift of the redox potential of FAD. Cys560 was substituted for Tyr by site-directed mutagenesis. This mutation decreased enzyme affinity to NADPH 35-fold by decreasing the bimolecular rate constant of nucleotide binding with no detectable effect on the kinetic mechanism. The affinity of the C560Y mutant enzyme to NADP+ decreased 9-fold compared to the wild-type enzyme, while the affinity to 2'-AMP was not significantly affected, suggesting that Cys560 is located in the nicotinamide binding site of the active, full-size enzyme in solution.  相似文献   

14.
Human novel reductase 1 (NR1) is an NADPH dependent diflavin oxidoreductase related to cytochrome P450 reductase (CPR). The FAD/NADPH- and FMN-binding domains of NR1 have been expressed and purified and their redox properties studied by stopped-flow and steady-state kinetic methods, and by potentiometry. The midpoint reduction potentials of the oxidized/semiquinone (-315 +/- 5 mV) and semiquinone/dihydroquinone (-365 +/- 15 mV) couples of the FAD/NADPH domain are similar to those for the FAD/NADPH domain of human CPR, but the rate of hydride transfer from NADPH to the FAD/NADPH domain of NR1 is approximately 200-fold slower. Hydride transfer is rate-limiting in steady-state reactions of the FAD/NADPH domain with artificial redox acceptors. Stopped-flow studies indicate that hydride transfer from the FAD/NADPH domain of NR1 to NADP+ is faster than hydride transfer in the physiological direction (NADPH to FAD), consistent with the measured reduction potentials of the FAD couples [midpoint potential for FAD redox couples is -340 mV, cf-320 mV for NAD(P)H]. The midpoint reduction potentials for the flavin couples in the FMN domain are -146 +/- 5 mV (oxidized/semiquinone) and -305 +/- 5 mV (semiquinone/dihydroquinone). The FMN oxidized/semiquinone couple indicates stabilization of the FMN semiquinone, consistent with (a) a need to transfer electrons from the FAD/NADPH domain to the FMN domain, and (b) the thermodynamic properties of the FMN domain in CPR and nitric oxide synthase. Despite overall structural resemblance of NR1 and CPR, our studies reveal thermodynamic similarities but major kinetic differences in the electron transfer reactions catalysed by the flavin-binding domains.  相似文献   

15.
Nitric-oxide synthase (NOS) is composed of a C-terminal, flavin-containing reductase domain and an N-terminal, heme-containing oxidase domain. The reductase domain, similar to NADPH-cytochrome P450 reductase, can be further divided into two different flavin-containing domains: (a) the N terminus, FMN-containing portion, and (b) the C terminus FAD- and NADPH-binding portion. The crystal structure of the FAD/NADPH-containing domain of rat neuronal nitric-oxide synthase, complexed with NADP(+), has been determined at 1.9 A resolution. The protein is fully capable of reducing ferricyanide, using NADPH as the electron donor. The overall polypeptide fold of the domain is very similar to that of the corresponding module of NADPH-cytochrome P450 oxidoreductase (CYPOR) and consists of three structural subdomains (from N to C termini): (a) the connecting domain, (b) the FAD-binding domain, and (c) the NADPH-binding domain. A comparison of the structure of the neuronal NOS FAD/NADPH domain and CYPOR reveals the strict conservation of the flavin-binding site, including the tightly bound water molecules, the mode of NADP(+) binding, and the aromatic residue that lies at the re-face of the flavin ring, strongly suggesting that the hydride transfer mechanisms in the two enzymes are very similar. In contrast, the putative FMN domain-binding surface of the NOS protein is less positively charged than that of its CYPOR counterpart, indicating a different nature of interactions between the two flavin domains and a different mode of regulation in electron transfer between the two flavins involving the autoinhibitory element and the C-terminal 33 residues, both of which are absent in CYPOR.  相似文献   

16.
Human methionine synthase reductase (MSR), a diflavin oxidoreductase, plays a vital role in methionine and folate metabolism by sustaining methionine synthase (MS) activity. MSR catalyzes the oxidation of NADPH and shuttles electrons via its FAD and FMN cofactors to inactive MS-cob(II)alamin. A conserved aromatic residue (Trp697) positioned next to the FAD isoalloxazine ring controls nicotinamide binding and catalysis in related flavoproteins. We created four MSR mutants (W697S, W697H, S698Δ, and S698A) and studied their associated kinetic behavior. Multiwavelength stopped-flow analysis reveals that NADPH reduction of the C-terminal Ser698 mutants occurs in three resolvable kinetic steps encompassing transfer of a hydride ion to FAD, semiquinone formation (indicating FAD to FMN electron transfer), and slow flavin reduction by a second molecule of NADPH. Corresponding experiments with the W697 mutants show a two-step flavin reduction without an observable semiquinone intermediate, indicating that W697 supports FAD to FMN electron transfer. Accelerated rates of FAD reduction, steady-state cytochrome c(3+) turnover, and uncoupled NADPH oxidation in the S698Δ and W697H mutants may be attributed to a decrease in the energy barrier for displacement of W697 by NADPH. Binding of NADP(+), but not 2',5'-ADP, is tighter for all mutants than for native MSR. The combined studies demonstrate that while W697 attenuates hydride transfer, it ensures coenzyme selectivity and accelerates FAD to FMN electron transfer. Moreover, analysis of analogous cytochrome P450 reductase (CPR) variants points to key differences in the driving force for flavin reduction and suggests that the conserved FAD stacking tryptophan residue in CPR also promotes interflavin electron transfer.  相似文献   

17.
Midpoint reduction potentials for the flavin cofactors in human NADPH-cytochrome P450 oxidoreductase were determined by anaerobic redox titration of the diflavin (FAD and FMN) enzyme and by separate titrations of its isolated FAD/NADPH and FMN domains. Flavin reduction potentials are similar in the isolated domains (FAD domain E(1) [oxidized/semiquinone] = -286 +/- 6 mV, E(2) [semiquinone/reduced] = -371 +/- 7 mV; FMN domain E(1) = -43 +/- 7 mV, E(2) = -280 +/- 8 mV) and the soluble diflavin reductase (E(1) [FMN] = -66 +/- 8 mV, E(2) [FMN] = -269 +/- 10 mV; E(1) [FAD] = -283 +/- 5 mV, E(2) [FAD] = -382 +/- 8 mV). The lack of perturbation of the individual flavin potentials in the FAD and FMN domains indicates that the flavins are located in discrete environments and that these environments are not significantly disrupted by genetic dissection of the domains. Each flavin titrates through a blue semiquinone state, with the FMN semiquinone being most intense due to larger separation (approximately 200 mV) of its two couples. Both the FMN domain and the soluble reductase are purified in partially reduced, colored form from the Escherichia coli expression system, either as a green reductase or a gray-blue FMN domain. In both cases, large amounts of the higher potential FMN are in the semiquinone form. The redox properties of human cytochrome P450 reductase (CPR) are similar to those reported for rabbit CPR and the reductase domain of neuronal nitric oxide synthase. However, they differ markedly from those of yeast and bacterial CPRs, pointing to an important evolutionary difference in electronic regulation of these enzymes.  相似文献   

18.
Purified hepatic NADPH-cytochrome P-450 reductase, which was reconstituted with dilauroylphosphatidylcholine, catalyzed a one-electron reductive denitrosation of 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)-1-nitrosourea ([14C]CCNU) to give 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)urea at the expense of NADPH. Ambient oxygen or anoxic conditions did not alter the rates of [14C]CCNU denitrosation catalyzed by NADPH-cytochrome P-450 reductase with NADPH. Electron equivalents for reduction could be supplied by NADPH or sodium dithionite. However, the turnover number with NADPH was slightly greater than with sodium dithionite. Enzymatic denitrosation with sodium dithionite or NADPH was observed in anaerobic incubation mixtures which contained NADPH-cytochrome P-450 reductase with or without cytochrome P-450 purified from livers of phenobarbital (PB)-treated rats; PB cytochrome P-450 alone did not support catalysis. PB cytochrome P-450 stimulated reductase activity at molar concentrations approximately equal to or less than NADPH-cytochrome P-450 reductase concentration, but PB cytochrome P-450 concentrations greater than NADPH-cytochrome P-450 reductase inhibited catalytic denitrosation. Cytochrome c, FMN, and riboflavin demonstrated different degrees of stimulation of NADPH-cytochrome P-450 reductase-dependent denitrosation. Of the flavins tested, FMN demonstrated greater stimulation than riboflavin and FAD had no observable effect. A 3-fold stimulation by FMN was not observed in the absence of NADPH-cytochrome P-450 reductase. These studies provided evidence which establish NADPH-cytochrome P-450 reductase rather than PB cytochrome P-450 as the enzyme in the hepatic endoplasmic reticulum responsible for CCNU reductive metabolism.  相似文献   

19.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

20.
Two catalytic domains, bearing FMN and FAD cofactors, joined by a connecting domain, compose the core of the NADPH cytochrome P450 reductase (CPR). The FMN domain of CPR mediates electron shuttling from the FAD domain to cytochromes P450. Together, both enzymes form the main mixed‐function oxidase system that participates in the metabolism of endo‐ and xenobiotic compounds in mammals. Available CPR structures show a closed conformation, with the two cofactors in tight proximity, which is consistent with FAD‐to‐FMN, but not FMN‐to‐P450, electron transfer. Here, we report the 2.5 Å resolution crystal structure of a functionally competent yeast–human chimeric CPR in an open conformation, compatible with FMN‐to‐P450 electron transfer. Comparison with closed structures shows a major conformational change separating the FMN and FAD cofactors from 86 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号