首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
The high mobility group or HMG proteins are nonhistone chromosomal proteins that have been found in relatively high amounts in nuclei of many tissues. A number of studies have shown that some of these proteins are preferentially associated with actively transcribed regions of the genome and may play a role in maintaining these regions in an active state. In this study, we undertook an investigation of the high mobility group proteins from the sea urchin, Stronglyocentrotus purpuratus. Initially the putative sea urchin HMGs were extracted from isolated nuclei of hatching blastula-stage embryos with 5% perchloric acid (PCA). The major proteins in this extract were characterized according to their electrophoretic mobility, amino acid composition, and association with isolated deoxyribonucleoprotein particles. The results indicate there is only one "major" sea urchin HMG protein, termed P2 in this paper. An estimate of the amount of P2 in relation to the inner histones, however, was low compared to what has been found for other HMG proteins. Of the other major 5% PCA-extractable proteins, one was identified as the cleavage stage H1. Another protein apparently resulted from H3 contamination in the 5% PCA extract, and the fourth major protein did not have all the characteristics of an HMG. In particular, it was not found associated with nucleosomal particles. The HMG proteins from other developmental stages were then examined. Five percent PCA extracts of nuclei from unfertilized eggs, 2-cell, 16-cell, hatching blastula, gastrula, and pluteus stages were analyzed on SDS- and acetic acid-urea gels. This analysis indicated that P2 exists in two different forms differing slightly in charge. The less basic form was found in the egg, 2-cell and 16-cell extracts. At the hatching blastula stage, both forms were present and by pluteus stage, the more basic form predominated. It appears that P2 is undergoing a developmental change from a less to more basic form. The presence of P2 in the 5% PCA extract of egg nuclei is proof that P2 does not initially appear sometime during embryogenesis but is already in the egg nucleus prior to fertilization.  相似文献   

2.
Changes in the pattern of protein synthesis were analyzed during the in vitro development of the micromere-primary mesenchyme cell line of the sea urchin embryo. Micromeres were isolated and cultured from 16-cell stage embryos, and primary mesenchyme cells were isolated and cultured from early gastrulae. Both cell isolates developed normally in culture with about the same timing as their in situ counterparts in control embryos. Newly synthesized proteins were labeled with [3H]valine at several stages of development and were analyzed by two-dimensional polyacrylamide gel electrophoresis and fluorgraphy. The electrophoretic pattern of labeled proteins changed dramatically during development. More than half of the analyzed proteins underwent qualitative or quantitative changes in their relative rates of valine incorporation and these changes were highly specific to this cell line. Almost all of the changes were initiated prior to gastrulation and many prior to hatching. The highest frequency of changes in the micromere pattern of protein synthesis occurred between hatching and the start of gastrulation. This peak of activity coincided with the normal time of ingression of the primary mesenchyme and preceded the differentiation of spicules by more than 30 hr. Most of the observed changes were characterized as either decreases in the synthesis of proteins that showed maximum incorporation at the 16-cell stage or increases in the synthesis of proteins that showed maxima in the fully differentiated cells. Very few proteins exhibited transient synthetic maxima at intermediate stages. Thus, the program of protein synthesis associated with the development of micromeres consists largely of a switch in emphasis from early to late proteins, with the primary time of switching being between hatching and the onset of gastrulation.  相似文献   

3.
4.
We have compared the total single-copy sequences transcribed as nuclear RNA in blastula and pluteus stage embryos of the sea urchin Tripneustes gratilla by hybridization of excess nuclear RNA with purified radioactive single-copy DNA. The kinetics of hybridization of either blastula or pluteus nuclear RNA with single-copy DNA show a single pseudo-first-order reaction with 34% of the single-copy genome. From the rate of the reaction and the purity of the nuclear RNA, it can be estimated that the reacting RNAs are present on the average at a concentration of one molecule per 14 nuclei. A mixture of blastula and pluteus RNA also hybridizes with 34% of the single-copy genome, indicating that the total complexity of RNAs transcribed at both stages is no greater than transcribed at each stage alone. The identity of the sequences transcribed by blastula and pluteus embryos was further examined by fractionation of the labeled DNA into sequences complementary and not complementary to pluteus RNA. This was achieved by hybridization of single-copy DNA to high pluteus RNA Cot, and separation of the hybridized and nonhybridized DNA on hydroxylapatite. Using either the DNA complementary or noncomplementary with pluteus RNA, essentially identical amounts of RNA:DNA hybrids are formed at high RNA Cot with blastula or pluteus RNA. Gross changes in the total RNA sequences transcribed do not appear to be involved in the developmental changes between blastula and pluteus, even though 45% of the mRNA sequences change between these two stages (Galau et al., 1976).  相似文献   

5.
Embryos of the sea urchin Psammechinus miliaris have been labelled after fertilization with [6(-3)H]uridine and cultured in filtered sea water. 32-cell, blastula, gastrula and pluteus stages were harvested. The DNA from these embryos was purified and hydrolyzed and the nuclear bases were analyzed by means of high performance liquid chromatography. The ratios of 5-methylcytosine and cytosine demonstrate that the concentrations of 5-methylcytosine are essentially the same in the developmental stages examined (gamma = 95%), which contradicts the hypothesis that methylation of DNA plays a role in cell differentiation.  相似文献   

6.
Chromatin-associated non-histone proteins of the sea urchin embryo are heterogeneous, and undergo qualitative as well as quantitative changes throughout early development. The rate of synthesis of these proteins is fairly constant to the pluteus stage and, in contrast to histone synthesis, does not parallel changes in the rates of synthesis of DNA. Evidence for a pool of chromatin-associated nonhistone proteins is provided by following the kinetics of entry into chromatin of labeled protein in pulse-chase experiments of prolonged duration. This pool is synthesized during cleavage and some non-histone proteins continue to associate with chromatin until gastrulation. In addition, different rates of entry of non-histone proteins into chromatin could be detected at different stages.  相似文献   

7.
Lipid peroxidation (LP) and glutathione content were studied at different developmental stages of the sea urchinStrongylocentrotus intermedius: egg cell, fertilization, 4 blastomers, blastula, hatching, gastrula, prism, pluteus. A high rate of LP in the total membrane fraction of sea urchin embryos and larvae at the stages from the egg cell to hatching was observed at enzymatic and nonenzymatic activation of LP. The LP rate was significantly reduced at the gastrula stage and at subsequent stages, there was practically no further development of the process. The glutathione concentration remained unchanged at different stages. The alterations in LP seem to reflect participation of free radicals in regulation of individual development.  相似文献   

8.
9.
Five developmentally regulated sea urchin mRNA sequences which increase in abundance between the blastula and pluteus stages of development were isolated by molecular cloning of cDNA. The regulated sequences all appeared in moderately abundant mRNA molecules of pluteus cells and represented 4% of the clones tested. There were no regulated sequences detected in the 40% of the clones which hybridized to the most abundant mRNA, and the screening procedures were inadequate to detect possible regulation in the 20 to 30% of the clones presumably derived from rare-class mRNA. The reaction of 32P[cDNA] from blastula and pluteus mRNA to dots of the cloned DNAs on nitrocellulose filters indicated that the mRNAs complementary to the different cloned pluteus-specific sequences were between 3- and 47-fold more prevalent at the pluteus stage than at the blastula stage. Polyadenylated RNA from different developmental stages was transferred from electrophoretic gels to nitrocellulose filters and reacted to the different cloned sequences. The regulated mRNAs were undetectable in the RNA of 3-h embryos, became evident at the hatching blastula stage, and reached a maximum in abundance by the gastrula or pluteus stage. Certain of the clones reacted to two sizes of mRNA which did not vary coordinately with development. Transfers of RNA isolated from each of the three cell layers of pluteus embryos that were reacted to the cloned sequences revealed that two of the sequences were found in the mRNA of all three layers, two were ectoderm specific, and one was endoderm specific. Four of the regulated sequences were complementary to one or two major bands and one to at least 50 bands on Southern transfers of restriction endonuclease-digested total sea urchin DNA.  相似文献   

10.
De novo synthesis of 5S RNA and of transfer RNA (tRNA) has been demonstrated previously to occur by mid-cleavage (128-cell stage) in sea urchin embryos (24). The present study focused on determining more precisely the time of onset of activity of the genes for 5S RNA and for tRNA during sea urchin embryogenesis by preloading the GTP precursor pools of unfertilized eggs. The results showed that newly-made 5S RNA and tRNA could be detected as early as the 32-cell stage. In order to determine whether newly-synthesized 5S RNA accumulates coordinately during development with newly-made 26S (34) and 18S ribosomal RNAs (rRNAs), the relative rates of accumulation of these three RNA molecules were measured and compared at each of several stages of sea urchin embryogenesis. In contrast to the coordinated accumulation of newly-synthesized 26S and 18S rRNAs, newly-made 5S RNA accumulated in excess at the mesenchyme blastula (9-fold excess), midgastrula (5-fold excess) and prism (3-fold excess) stages. The 5S RNA/26S RNA molar ratios only approached unity in advanced (48 hr) plutei. The non-coordinated accumulation of newly-made 5S RNA with that of 26S and 18S rRNAs suggests that the accumulation of these newly-synthesized RNAs is differentially regulated during early sea urchin development.  相似文献   

11.
12.
13.
Inverted repeat DNA sequences during embryogenesis were tested by comparing the bulk inverted repeat taken from Strongylocentrotus intermedius sea urchin embryos at different stages of development. This fraction exhibited quantitative and qualitative changes. A reversible quantitative decrease was associated with the 16-cell embryo and blastula stages. Sizing on 1.5% agarose gel indicated that the length of the palindromic sequences at the early blastula stage was predominantly about 200 b. p., and at the pluteus stage 240 b. p. Sensitivity of the palindromic sequences to S1 nuclease digestion at the blastula and gastrula stages was different. It was shown that a specific set of the inverted repeats was included in fragments of DNA--comparising the origin of replication. The results suggest that the change of inverted repeats may be determined by replication processes.  相似文献   

14.
By separating formic acid hydrolysates with high pressure chromatography on an Aminex-10 column, we determined the ratio of 5-methyl cytosine to cytosine and other bases of DNA from sea urchin sperm and nuclei of embryos from early cleavage through pluteus stages. Contrary to several previous reports, we could not find any measurable changes in the methylation levels of embryonic nuclear DNAs at different stages of development. We also found no consistent differences between the methylation levels of sea urchin sperm and embryonic nuclei or the 5-methyl cytosine content of fish (Mugilcephalus) sperm and liver nuclei. While these measurements would not have detected subtle variations associated with differentiation, they would have indicated the gross changes previously reported for embryos or between sperm and somatic nuclei had those changes been present.  相似文献   

15.
16.
Ribosomes isolated from unfertilised eggs of the sea urchin, Strongylocentrotus purpuratus , have a higher protein: RNA ratio than ribosomes extracted from blastula stage ribosomes. Approximately 64 additional protein equivalents are found per ribosome. Most of the proteins are of high molecular weight and are tightly bound, being resistant to high-salt and EDTA treatment. The majority of the proteins appear to be basic in nature and remain associated with the 40S subunit on dissociation of the ribosomes. The possible physiological significance of the additional proteins is discussed in terms of the activation of protein synthesis following fertilisation. Sea urchin ribosomes, isolated from various stages of development, showed differential protein-labelling patterns. The high molecular-weight proteins had preferentially higher specific activities and one ribosomal protein was particularly highly labelled, reaching a maximum at the gastrula stage of development. The functional role of this highly labelled protein during development is discussed.  相似文献   

17.
Micromeres and mesomeres isolated from 16-cell embryos of the sea urchin, Strongylocentrotus intermedius , were cultured in vitro , and changes in the cells surface architecture during the differentiation of the micromere- and mesomere-derived cells were observed using scanning electron microscopy. Two types of the distribution of the surface microvilli were observed in both blastomere-derived cell masses. One type showed a uniform distribution of the microvilli and the other type showed an uneven one. Though many microvilli were observed in most of both mesomere and micromere-derived cells at the 64-cell stage and the early blastula stage (16 hr after the 16-cell stage at 6°C) respectively, the microvilli decreased in number at the later stages in both blastomere-derived cell masses as compared with the 64-cell stage and the early blastula stage respectively. Rapid disappearance of the surface microvilli was observed in the micromere-derived cells in contrast with the mesomere-derived cells which still had many microvilli even at the midmesenchyme stage.  相似文献   

18.
19.
5-azacytidine (5-azaCR), an analogue of cytidine, inhibits nuclear DNA methylation in early sea urchin embryos. This inhibition is specific and dose-dependent. Exposure of sea urchin embryos at any stage between one-cell and blastula, to micromolar quantities of 5-azaCR invariably inhibits development beyond the blastula stage. In a substantial number of embryos arrested at the blastula stage, spicule formation proceeds although other morphological differentiation is lacking. No significant effect on development is seen if sea urchin embryos are exposed to 5-azaCR at post-blastula stages. 5-azaCR also inhibits the development of a mosaic egg such as the ascidian Phallusia mammilata at the blastula stage, indicating that both regulative (sea urchin) and mosaic (ascidian) embryos respond more or less similarly to 5-azaCR treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号