首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d = 6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 °C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 °C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

2.
Lipid domain formation in membranes underlies the concept of rafts but their structure is controversial because the key role of cholesterol has been challenged. The configuration of glycosphingolipid receptors for agonists, bacterial toxins and enveloped viruses in plasma membrane rafts appears to be an important factor governing ligand binding and infectivity but the details are as yet unresolved. I have used X-ray diffraction methods to examine how cholesterol affects the distribution of glycosphingolipid in aqueous dispersions of an equimolar mixture of cholesterol and egg-sphingomyelin containing different proportions of glucosylceramide from human extracts. Three coexisting liquid-ordered bilayer structures are observed at 37 °C in mixtures containing up to 20 mol% glycosphingolipid. All the cholesterol was sequestered in one bilayer with the minimum amount of sphingomyelin (33 mol%) to prevent formation of cholesterol crystals. The other two bilayers consisted of sphingomyelin and glucosylceramide. Asymmetric molecular species of glucosylceramide with N-acyl chains longer than 20 carbons form an equimolar complex with sphingomyelin in which the glycosidic residues are arranged in hexagonal array. Symmetric molecular species mix with sphingomyelin in proportions less than equimolar to form quasicrystalline bilayers. When the glycosphingolipid exceeds equimolar proportions with sphingomyelin cholesterol is incorporated into the structure and formation of a gel phase of glucosylceramide is prevented. The demonstration of particular structural features of ceramide molecular species combined with the diversity of sugar residues of glycosphingolipid classes paves the way for a rational approach to understanding the functional specificity of lipid rafts and how they are coupled across cell membranes.  相似文献   

3.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d=6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 degrees C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 degrees C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

4.
Microdomains, or lipid rafts, are transient membrane regions enriched in sphingolipids and sterols that have only recently, but intensively, been studied in plants. In this work, we report a detailed, easy-to-follow, and fast procedure to isolate detergent-resistant membranes (DRMs) from purified plasma membranes (PMs) that was used to obtain DRMs from Phaseolus vulgaris and Nicotiana tabacum leaves and germinating Zea mays embryos. Characterized according to yield, ultrastructure, and sterol composition, these DRM preparations showed similarities to analogous preparations from other eukaryotic cells. Isolation of DRMs from germinating maize embryos reveals the presence of microdomains at very early developmental stages of plants.  相似文献   

5.
Chen X  Morris R  Lawrence MJ  Quinn PJ 《Biochimie》2007,89(2):192-196
The action of detergents in the isolation of detergent-resistant membrane fractions from rat brain is reported. Triton X-100 treatment of whole rat brain homogenate at 4 degrees C produced detergent-resistant membranes with a density of 1.07g/ml compared with Brij96 where the density of the membrane was only 1.05g/ml. The DRM fractions isolated using Triton X-100 are considerably heavier than those isolated from homogenates treated with Brij96. The major polar lipid composition of DRMs derived from Brij96 treated homogenates have a higher proportion of aminophospholipids compared with choline phospholipids than Triton X-100 derived DRMs; this may indicate that DRMs from Brij96 treated homogenates are more closely related to the parent membrane in lipid composition. Solubilization by Triton X-100 at higher temperatures resulted in the appearance of a second detergent-resistant membrane fraction distinctly lighter in density than the membrane recovered at density 1.07g/ml. Analysis of phospholipid composition of the brain homogenate during detergent treatment for up to 30min at 37 degrees C showed a decreasing proportion of sphingomyelin. Treatment of homogenates at 37 degrees C appears to activate phospholipases/sphingomyelinases that may alter the lipid content of isolated DRMs. The presence of K+/Mg2+ with Brij96 treatment results in DRM fractions with significantly thicker bilayers and of larger vesicle diameter than DRMs isolated from either Triton X-100 or Brij96 treated homogenates in the absence of cations.  相似文献   

6.
By one hypothesis, phospholipids containing unsaturated fatty acids may be involved in phase separation from the lipid raft molecules sphingomyelin (SM) and cholesterol (CHOL). We tested the effect of increasing the number of double bonds in the acyl chains of phosphatidylethanolamines (PEs) on phase separation from SM/CHOL. The detergent extraction method was employed on various homoacid and heteroacid PEs in mixed vesicles composed of PE/SM/CHOL (1:1:1mol). The disaturated homoacid 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (16:0-16:0PE) showed the least solubility upon detergent extraction whereas maximal solubility was observed for the polyunsaturated homoacid 1,2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine (22:6-22:6PE). Increasing the number of double bonds in the sn-2 position of heteroacid saturated-unsaturated PEs resulted in an increase in detergent solubility, which correlated with a general decrease in the gel-to-liquid crystalline phase transition temperature of the PEs. Our findings demonstrate that increasing unsaturation in PEs results in increased phase separation from SM/CHOL membranes, which may have implications for cellular signaling.  相似文献   

7.
Early works have shown that when biomembranes are extracted with the non-ionic detergent Triton X-100 at 4 degrees C, only a subset of the components is solubilized. The aim of this paper was to investigate the solubilization of a cell membrane at different Triton concentrations, and to compare the lipid composition and acyl chain order/mobility of the insoluble material with those of the original membrane. We choose bovine erythrocytes, because they have an uncommon composition, as they have a huge amount of sphingomyelin and phosphatidylcholine is almost absent. We determined the degree of order/mobility of the lipid acyl chains by EPR spectroscopy, using liposoluble spin labels. Incubation of bovine erythrocytes with increasing Triton X-100 concentrations yields decreasing amounts of insoluble material which is enriched in sphingomyelin and depleted in cholesterol. Complete lipid solubilization is achieved at a detergent/lipid ratio of about 60, which is much higher than the values reported for human erythrocytes, but is in line with results obtained in model systems. An insoluble pellet is still obtained at higher Triton concentrations, which seems to consist mainly of protein. A very high correlation is found between lipid chain mobility restrictions and sphingomyelin content in the lipid structures. The human erythrocyte membrane also fits well in this correlation, suggesting a significant role of sphingomyelin in determining acyl chain organization. The analogies and differences between our insoluble material and the detergent-resistant membranes (DRM) are discussed.  相似文献   

8.
Perturbation of the homeostasis of brain membrane lipids has been implicated in the pathomechanism of Alzheimer's disease (AD). The ε4 allele of the apolipoprotein E gene (APOE) confers an increased risk, in a dosage-dependent manner, for brain amyloid-β accumulation and the development of sporadic AD. An effect of the APOE genotype on brain lipid homeostasis may underlie the AD risk associated with the ε4 allele. In this research, we examined an effect of APOE ε4 on the lipid class composition of crude membranes and raft-enriched fractions of brains. We applied enzymatic reaction-based methods for the quantification of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, and sphingomyelin. Our results indicate that brain lipid class composition was neither significantly altered in AD subjects nor affected by the presence of the APOE ε4 allele.  相似文献   

9.
The influenza A virus (IFV) possesses a highly ordered cholesterol-rich lipid envelope. A specific composition and structure of this membrane raft envelope are essential for viral entry into cells and virus budding. Several steroidal amines were investigated for antiviral activity against IFV. Both, a positively charged amino function and the highly hydrophobic (C log P ? 5.9) ring system are required for IC50 values in the low μM range. An amino substituent is preferential to an azacyclic A-ring. We showed that these compounds either disrupt or augment membrane rafts and in some cases inactivate the free virus. Some of the compounds also interfere with virus budding. The antiviral selectivity improved in the series 3-amino, 3-aminomethyl, 3-aminoethyl, or by introducing an OH function in the A-ring. Steroidal amines show a new mode of antiviral action in directly targeting the virus envelope and its biological functions.  相似文献   

10.
The size and the bilayer thickness of detergent-resistant membranes isolated from rat brain neuronal membranes using Triton X-100 or Brij 96 in buffers with or without the cations, K+/Mg2+ at a temperature of either 4 °C or 37 °C were determined by dynamic light scattering and small-angle neutron scattering. Regardless of the precise conditions used, isolated membrane preparations consisted of vesicles of ∼ 100 to 200 nm diameter as determined by dynamic light scattering methods, equating to an area of the lipid based membrane microdomain size of 200 to 400 nm diameter. By means of small angle neutron scattering it was established that the average thickness of the bilayers of the complete population of detergent-resistant membranes was similar to that of the parental membrane at between 4.6 and 5.0 nm. Detergent-resistant membranes prepared using buffers containing K+/Mg2+ uniquely formed unilamellar vesicles while membranes prepared in the absence of K+/Mg2+ formed a mixture of uni- and oligolamellar structures indicating that the arrangement of the membrane differs from that observed in the presence of cations. Furthermore, the detergent-resistant membranes prepared at 37 °C were slightly thicker than those prepared at 4 °C, consistent with the presence of a greater proportion of lipids with longer, more saturated fatty acid chains associated with the Lo (liquid-ordered) phase. It was concluded that the preparation of detergent-resistant membranes at 37 °C using buffer containing cations abundant in the cytoplasm might more accurately reflect the composition of lipid rafts present in the plasma membrane under physiological conditions.  相似文献   

11.
The distribution of raft markers in curved membrane exvaginations and invaginations, induced in human erythrocytes by amphiphile-treatment or increased cytosolic calcium level, was studied by fluorescence microscopy. Cholera toxin subunit B and antibodies were used to detect raft components. Ganglioside GM1 was enriched in membrane exvaginations (spiculae) induced by cytosolic calcium and amphiphiles. Stomatin and the cytosolic proteins synexin and sorcin were enriched in spiculae when induced by cytosolic calcium, but not in spiculae induced by amphiphiles. No enrichment of flotillin-1 was detected in spiculae. Analyses of the relative protein content of released exovesicles were in line with the microscopic observations. In invaginations induced by amphiphiles, the enrichment of ganglioside GM1, but not of the integral membrane proteins flotillin-1 and stomatin, was observed. Based on the experimental results and theoretical considerations we suggest that membrane skeleton-detached, laterally mobile rafts may sort into curved or flat membrane regions dependent on their intrinsic molecular shape and/or direct interactions between the raft elements.  相似文献   

12.
Erythrocytes prepared from riboflavin- and tocopherol-deficient (RT?) and from control rats were used to investigate the mechanism of oxidative hemolysis by the factors of favism. RT? erythrocytes have a defense system against the oxidative stress which is blocked either where regeneration of GSH occurs or the scavenging of the radicals from the membrane is prevented. The oxidative factors used were isouramil, divicine and diamide. When RT? erythrocytes were treated with isouramil, GSH decreased to undetectable levels and was not regenerated. Complete hemolysis occurred, but no oxidation of SH groups of membrane proteins or formation of spectrin polymers was detected. A similar effect was observed with diamide. However, SH groups of membrane proteins were completely oxidized and spectrin polymers were formed. Extensive lipid peroxidation was also detected together with a 30% fall in the arachidonic acid level. Control erythrocytes treated with either isouramil or diamide were not hemolyzed. When treated with isouramil, after a fall in the first few minutes, the GSH level was completely regenerated after 20 min. Incubation with diamide caused extensive oxidation of SH groups of membrane proteins and formation of spectrin polymers. No lipid peroxidation was detected after treatment with isouramil, but the same decrease of arachidonic acid occurred as in RT? erythrocytes. These results support the hypothesis that oxidative hemolysis by the factors of favism is caused by uncontrolled peroxidation of membrane lipids.  相似文献   

13.
Eph receptor tyrosine kinases and their membrane-bound ligand ephrins form an essential cell communication system. Both ephrin classes have been shown to localize within cell surface lipid rafts, yet regulate different biological processes. In order to provide insight into this distinct behavior, we examined ephrin-A5 and B1 localization and signaling in murine fibroblasts and tissues. Results indicated that ephrin-A5 was constitutively present in detergent-resistant membrane fractions, while ephrin-B1 displayed translocation to membrane fractions upon stimulation. Ephrin-A5 and B1 were present in detergent-resistant membrane fractions with different buoyancies in vitro and in different raft fractions in vivo. Moreover, ephrin-A5 and B1 differentially influenced actin reorganization. Finally, microarray analysis revealed unique patterns of gene expression between the two ephrin classes. We thus demonstrate that distinct localization and compartmentalization provide insight into the subcellular basis for differential signaling observed in ephrin-A and B classes.  相似文献   

14.
15.
Several studies have shown the importance of dystrophin-associated protein complex in the development of muscular dystrophies and dilated cardiomyopathy associated to vascular dysfunction. In vascular endothelium, dystrophin is substituted for utrophin (autosomal homolog of dystrophin); however, its role in this tissue is unknown. Therefore, it is important to obtain a more extensive knowledge of utrophin and its associated proteins in endothelial cells. In a previous study, we demonstrated the presence of utrophin-associated protein complex (UAPC) in human umbilical vein endothelial cells HUVEC, which interacts with caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS). Also, some of our observations suggested the presence of this complex in distinct membrane domains. Therefore, the aim of this study was to analyze the presence of the UAPC in caveolae and non-caveolae lipid rafts domains of HUVEC at baseline and with a mechanical stimulus. It was demonstrated, by subcellular fractionation and co-immunoprecipitation assays, the association of UAPC with Cav-1 and eNOS in caveolae domains, as well as its interaction with eNOS in non-caveolae lipid raft domains. Additionally, it was also observed that mechanical stress on endothelial cells induced activation and release of eNOS from both caveolae and non-caveolae lipid raft associated to UAPC. Together these results suggest that UAPC located in caveolae and non-caveolae lipid raft domains of HUVECs may have a mechanosensory function that could participate in the control of eNOS activity.  相似文献   

16.
A commercially available enzymatic assay (Boehringer Monotest) was modified to allow a rapid and sensitive determination of cholesterol in membrane lipid extracts. This was achieved by adding 0.5% Triton X-100 to the reagent solution. The detergent did not interfere with the assay. The relationship between the amount of cholesterol per assay and the absorbance at 500 nm was linear up to 100 μg. The recovery in the assay was better than 95%. The assay was applied to the determination of cholesterol in erythrocyte membrane lipid extracts.  相似文献   

17.
The lipid fluidity in purified plasma membranes (PM) of murine leukemic GRSL cells, as measured by fluorescence polarization, is much higher than in PM of normal thymocytes. This was found to be due to relatively low contents of cholesterol and sphingomyelin and a high amount of unsaturated fatty acyl chains, especially linoleic acid, in the phospholipids. PM from GRSL cells contain markedly more phosphatidylethanolamine than those from thymocytes. For both GRSL cells and thymocytes the detailed lipid composition of isolated PM was compared with that of the corresponding shed extracellular membranes (ECM), which were isolated from the ascites fluid and from thymus cell suspensions, respectively. The somewhat decreased lipid fluidity of thymocyte ECM as compared to their PM, can be ascribed to the increased cholesterol/phospholipid molar ratio (0.88 vs. 0.74). No other major differences were found between the lipid composition of these membranes. In contrast, significant differences were found between PM and ECM from GRSL cells. In this system a much lower lipid fluidity of the shed ECM was found, due to the much increased cholesterol/phospholipid molar ratio (3.5-fold) and sphingomyelin (9-fold) content, as compared to the PM. Further, the ECM contain relatively more lysophosphatidylethanolamine and less phosphatidylcholine and -inositol. ECM contain a higher amount of polyunsaturated fatty acids, especially in the phosphatidylethanolamine and lysophosphatidylethanolamine classes. On the other hand, the fatty acids of phosphatidylcholine and lysophosphatidylcholine are more saturated than in PM. In particular, ECM of GRSL cells contain less oleic and linoleic acid residues and more arachidonic acid and 22:polyunsaturated fatty acid residues than PM. The possible relevance of these differences with respect to the mechanism of shedding of vesicles from the cell surface, is discussed.  相似文献   

18.
αB-crystallin (αB) is known as an intracellular Golgi membrane-associated small heat shock protein. Elevated levels of this protein have been linked with a myriad of neurodegenerative pathologies including Alzheimer disease, multiple sclerosis, and age-related macular degeneration. The membrane association of αB has been known for more than 3 decades, yet its physiological import has remained unexplained. In this investigation we show that αB is secreted from human adult retinal pigment epithelial cells via microvesicles (exosomes), independent of the endoplasmic reticulum-Golgi protein export pathway. The presence of αB in these lipoprotein structures was confirmed by its susceptibility to digestion by proteinase K only when exosomes were exposed to Triton X-100. Transmission electron microscopy was used to localize αB in immunogold-labeled intact and permeabilized microvesicles. The saucer-shaped exosomes, with a median diameter of 100-200 nm, were characterized by the presence of flotillin-1, α-enolase, and Hsp70, the same proteins that associate with detergent-resistant membrane microdomains (DRMs), which are known to be involved in their biogenesis. Notably, using polarized adult retinal pigment epithelial cells, we show that the secretion of αB is predominantly apical. Using OptiPrep gradients we demonstrate that αB resides in the DRM fraction. The secretion of αB is inhibited by the cholesterol-depleting drug, methyl β-cyclodextrin, suggesting that the physiological function of this protein and the regulation of its export through exosomes may reside in its association with DRMs/lipid rafts.  相似文献   

19.
Measurements of contact-dependent fluorescence quenching and of fluorescence resonance energy transfer (FRET) within bilayers provide information concerning the spatial relationships between molecules on distance scales of a few nm or up a few tens of nm, respectively, and are therefore well suited to detect the presence and composition of membrane microdomains. As described in this review, techniques based on fluorescence quenching and FRET have been used to demonstrate the formation of nanoscale liquid-ordered domains in cholesterol-containing model membranes under physiological conditions, and to investigate the structural features of lipids and proteins that influence their partitioning between liquid-ordered and liquid-disordered domains. FRET-based methods have also been used to test for the presence of ‘raft’ microdomains in the plasma membranes of mammalian cells. We discuss the sometimes divergent findings of these studies, possible modifications to the ‘raft hypothesis’ suggested by studies using FRET and other techniques, and the further potential of FRET-based methods to test and to refine current models of the nature and organization of membrane microdomains.  相似文献   

20.
Human erythrocyte membrane-bound acetylcholinesterase was converted to a monomeric species by treatment of ghosts with 2-mercaptoethanol and iodoacetic acid. After solubilization with Triton X-100, the reduced and alkylated enzyme was partially purified by affinity chromatography and separated from residual dimeric enzyme by sucrose density gradient centrifugation in a zonal rotor. Monomeric and dimeric acetylcholinesterase showed full enzymatic activity in presence of Triton X-100 whereas in the absence of detergent, activity was decreased to approx. 20% and 15%, respectively. Preformed egg phosphatidylcholine vesicles fully sustained activity of the monomeric species whereas the dimer was only 80% active. The results suggest that a dimeric structure is not required for manifestation of amphiphile dependency of membrane-bound acetylcholinesterase from human erythrocytes. Furthermore, monomeric enzyme appears to be more easily inserted into phospholipid bilayers than the dimeric species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号