首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell.  相似文献   

3.
4.
Agents that elevate intracellular cyclic AMP (cAMP) levels promote neuronal survival in a manner independent of neurotrophic factors. Inhibitors of phosphatidylinositol 3 kinase and dominant-inactive mutants of the protein kinase Akt do not block the survival effects of cAMP, suggesting that another signaling pathway is involved. In this report, we demonstrate that elevation of intracellular cAMP levels in rat cerebellar granule neurons leads to phosphorylation and inhibition of glycogen synthase kinase 3beta (GSK-3beta). The increased phosphorylation of GSK-3beta by protein kinase A (PKA) occurs at serine 9, the same site phosphorylated by Akt. Purified PKA is able to phosphorylate recombinant GSK-3beta in vitro. Inhibitors of GSK-3 block apoptosis in these neurons, and transfection of neurons with a GSK-3beta mutant that cannot be phosphorylated interferes with the prosurvival effects of cAMP. These data suggest that activated PKA directly phosphorylates GSK-3beta and inhibits its apoptotic activity in neurons.  相似文献   

5.
Several polycations were tested for their abilities to inhibit the activity of glycogen synthase kinase 3 (GSK-3). L-Polylysine was the most powerful inhibitor of GSK-3 with half-maximal inhibition of glycogen synthase phosphorylation occurring at approx. 100 nM. D-Polylysine and histone H1 were also inhibitory, but the concentration dependence was complex, and DL-polylysine was the least effective inhibitor. Spermine caused about 50% inhibition of GSK-3 at 0.7 mM and 70% inhibition at 4 mM. Inhibition of GSK-3 by L-polylysine could be blocked or reversed by heparin. A heat-stable polycation antagonist isolated from swine kidney cortex also blocked the inhibitory effect of L-polylysine on GSK-3 and blocked histone H1 stimulation of protein phosphatase 2A activity. Under the conditions tested, L-polylysine also inhibited GSK-3 catalyzed phosphorylation of type II regulatory subunit of cAMP-dependent protein kinase and a 63 kDa brain protein, but only slightly inhibited phosphorylation of inhibitor 2 or proteolytic fragments of glycogen synthase that contain site 3 (a + b + c). L-Polylysine at a concentration (200 nM) that caused nearly complete inhibition of GSK-3 stimulated casein kinase I and casein kinase II, but had virtually no effect on the catalytic subunit of cAMP-dependent protein kinase. These results suggest that polycations can be useful in controlling GSK-3 activity. Polycations have the potential to decrease the phosphorylation state of glycogen synthase at site 3, both by inhibiting GKS-3 as shown in this study and by stimulating the phosphatase reaction as shown previously (Pelech, S. and Cohen, P. (1985) Eur. J. Biochem. 148, 245-251).  相似文献   

6.
7.
Ca2+-regulated heat-stable protein of 24 kDa (CRHSP-24) is a serine phosphoprotein originally identified as a physiological substrate for the Ca2+-calmodulin regulated protein phosphatase calcineurin (PP2B). CRHSP-24 is a paralog of the brain-specific mRNA-binding protein PIPPin and was recently shown to interact with the STYX/dead phosphatase protein in developing spermatids (Wishart MJ and Dixon JE. Proc Natl Acad Sci USA 99: 2112-2117, 2002). Investigation of the effects of phorbol ester (12-o-tetradecanoylphorbol-13-acetate; TPA) and cAMP analogs in 32P-labeled pancreatic acini revealed that these agents acutely dephosphorylated CRHSP-24 by a Ca2+-independent mechanism. Indeed, cAMP- and TPA-mediated dephosphorylation of CRHSP-24 was fully inhibited by the PP1/PP2A inhibitor calyculin A, indicating that the protein is regulated by an additional phosphatase other than PP2B. Supporting this, CRHSP-24 dephosphorylation in response to the Ca2+-mobilizing hormone cholecystokinin was differentially inhibited by calyculin A and the PP2B-selective inhibitor cyclosporin A. Stimulation of acini with secretin, a secretagogue that signals through the cAMP pathway in acini, induced CRHSP-24 dephosphorylation in a concentration-dependent manner. Isoelectric focusing and immunoblotting indicated that elevated cellular Ca2+ dephosphorylated CRHSP-24 on at least three serine sites, whereas cAMP and TPA partially dephosphorylated the protein on at least two sites. The cAMP-mediated dephosphorylation of CRHSP-24 was inhibited by low concentrations of okadaic acid (10 nM) and fostriecin (1 microM), suggesting that CRHSP-24 is regulated by PP2A or PP4. Collectively, these data indicate that CRHSP-24 is regulated by diverse and physiologically relevant signaling pathways in acinar cells, including Ca2+, cAMP, and diacylglycerol.  相似文献   

8.
To characterize the contribution of glycogen synthase kinase 3beta (GSK3beta) inactivation to insulin-stimulated glucose metabolism, wild-type (WT-GSK), catalytically inactive (KM-GSK), and uninhibitable (S9A-GSK) forms of GSK3beta were expressed in insulin-responsive 3T3-L1 adipocytes using adenovirus technology. WT-GSK, but not KM-GSK, reduced basal and insulin-stimulated glycogen synthase activity without affecting the -fold stimulation of the enzyme by insulin. S9A-GSK similarly decreased cellular glycogen synthase activity, but also partially blocked insulin stimulation of the enzyme. S9A-GSK expression also markedly inhibited insulin stimulation of IRS-1-associated phosphatidylinositol 3-kinase activity, but only weakly inhibited insulin-stimulated Akt/PKB phosphorylation and glucose uptake, with no effect on GLUT4 translocation. To further evaluate the role of GSK3beta in insulin signaling, the GSK3beta inhibitor lithium was used to mimic the consequences of insulin-stimulated GSK3beta inactivation. Although lithium stimulated the incorporation of glucose into glycogen and glycogen synthase enzyme activity, the inhibitor was without effect on GLUT4 translocation and pp70 S6 kinase. Lithium stimulation of glycogen synthesis was insensitive to wortmannin, which is consistent with its acting directly on GSK3beta downstream of phosphatidylinositol 3-kinase. These data support the hypothesis that GSK3beta contributes to insulin regulation of glycogen synthesis, but is not responsible for the increase in glucose transport.  相似文献   

9.
Dysregulation of the protein kinase glycogen synthase kinase 3 (GSK-3) has been implicated in the development of type 2 diabetes mellitus. GSK-3 protein expression and kinase activity are elevated in diabetes, while selective GSK-3 inhibitors have shown promise as modulators of glucose metabolism and insulin sensitivity. There are two GSK-3 isoforms in mammals, GSK-3α and GSK-3β. Mice engineered to lack GSK-3β die in late embryogenesis from liver apoptosis, whereas mice engineered to lack GSK-3α are viable and exhibit improved insulin sensitivity and hepatic glucose homeostasis. To assess the potential role of GSK-3β in insulin function, a conditional gene-targeting approach whereby mice in which expression of GSK-3β was specifically ablated within insulin-sensitive tissues were generated was undertaken. Liver-specific GSK-3β knockout mice are viable and glucose and insulin tolerant and display “normal” metabolic characteristics and insulin signaling. Mice lacking expression of GSK-3β in skeletal muscle are also viable but, in contrast to the liver-deleted animals, display improved glucose tolerance that is coupled with enhanced insulin-stimulated glycogen synthase regulation and glycogen deposition. These data indicate that there are not only distinct roles for GSK-3α and GSK-3β within the adult but also tissue-specific phenotypes associated with each of these isoforms.  相似文献   

10.
Early studies of glycogen synthase kinase 3 (GSK-3) in mammalian systems focused on its pivotal role in glycogen metabolism and insulin-mediated signaling. It is now recognized that GSK-3 is central to a number of diverse signaling systems. Here, we show that the major form of the kinase Shaggy (Sgg), the GSK-3 fly ortholog, is negatively regulated during insulin-like/phosphatidylinositol 3-kinase (PI3K) signaling in vivo. Since genetic studies of Drosophila melanogaster had previously shown that Wingless (Wg) signaling also acts to antagonize Sgg, we investigate how the kinase might integrate, or else discriminate, signaling inputs by Wg and insulin. Using Drosophila cell line assays, we found, in contrast to previous reports, that Wg induces accumulation of its transducer Armadillo (Arm)/beta-catenin without significant alteration of global Sgg-specific activity. In agreement with a previous study using human GSK-3beta, Wg did not cause phosphorylation changes of the Ser9 or Tyr214 regulatory phosphorylated sites of Sgg. Conversely, as shown in mammalian systems, insulin-induced inhibition of Sgg-specific activity by phosphorylation at the N-terminal pseudosubstrate site (Ser9) did not induce Arm/beta-catenin accumulation, showing selectivity in response to the different signaling pathways. Interestingly, a minigene bearing a Ser9-to-Ala change rescued mutant sgg without causing abnormal development, suggesting that the regulation of Sgg via the inhibitory pseudosubstrate domain is dispensable for many aspects of its function. Our studies of Drosophila show that Wg and insulin or PI3K pathways do not converge on Sgg but that they exhibit cross-regulatory interactions.  相似文献   

11.
Neuropathological hallmarks of Alzheimer's disease are extracellular senile plaques and intracellular neurofibrillary lesions. The neurofibrillary lesions mainly consist of the hyperphosphorylated microtubule-associated protein Tau predominantly expressed in the axon of CNS neurons. Hyperphosphorylation of Tau negatively affects its binding to tubulin and decreases the capacity to promote microtubule assembly. Among a number of proline-directed kinases capable of phosphorylating paired helical filament-Tau, glycogen synthase kinase 3beta (GSK3beta) was first identified as a Tau protein kinase I and has been demonstrated to phosphorylate Tau both in vivo and in vitro. However, the phosphorylation mechanism of Tau by GSK3beta remained unclear. In this study, we show that the T231 is the primary phosphorylation site for GSK3beta and the Tau227-237 (AVVRTPPKSPS) derived from Tau containing T231P232 motif is identified as the GSK3beta binding site with high affinity of a Kd value 0.82 +/- 0.16 mumol/L. Our results suggest that direct binding and phosphorylation of T231P232 motif by GSK3beta induces conformational change of Tau and consequentially alters the inhibitory activity of its N-terminus that allows the phosphorylation of C-terminus of Tau by GSK3beta. Furthermore, hyperphosphorylation reduces Tau's ability to promote tubulin assembly and to form bundles in N18 cells. T231A mutant completely abolishes Tau phosphorylation by GSK3beta and retains the ability to promote tubulin polymerization and bundle formation. Taken together, these results suggest that phosphorylation of T231 by GSK3beta may play an important role in Tau's hyperphosphorylation and functional regulation.  相似文献   

12.
Serine-threonine kinase 38 (STK38) is a member of the protein kinase A (PKA)/PKG/PKC-like family. In the present study, we investigated the regulatory mechanism of STK38 and assessed its role in the cellular stress response. Among various environmental stresses, STK38 was specifically activated by H(2)O(2), and the phosphatidylinositol 3-kinase inhibitor wortmannin or AKT inhibitor IV suppressed this activation. STK38 was also activated by a constitutively active AKT1 or by GSK-3β inhibitor VII. The phosphorylation level of GSK-3β was correlated with the STK38 activity, in response to various stimuli and in different cell lines. Co-immunoprecipitation analysis revealed that GSK-3β physically interacted with STK38 in cells. GSK-3β overexpression inhibited the H(2)O(2)-stimulated STK38 activity. GSK-3β phosphorylated STK38 on residues S6 and T7 in vitro, depending largely on a PKA-mediated priming phosphorylation of STK38 on residues S10 and S11, respectively. STK38's H(2)O(2)-stimulated activity was enhanced by alanine substitution at its priming sites and/or at S6 and T7, and it was partially reduced by a phosphomimetic mutation at S6 or T7. STK38 knockdown enhanced the H(2)O(2)-induced JNK phosphorylation and cell death. Our results indicate that that GSK-3β inhibits STK38's full activation, and suggest that STK38 activation is required to prevent cell death in response to oxidative stress.  相似文献   

13.
Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a serine/threonine-directed kinase that is activated following increases in intracellular Ca(2+). CaMKKβ activates Ca(2+)/calmodulin-dependent protein kinase I, Ca(2+)/calmodulin-dependent protein kinase IV, and the AMP-dependent protein kinase in a number of physiological pathways, including learning and memory formation, neuronal differentiation, and regulation of energy balance. Here, we report the novel regulation of CaMKKβ activity by multisite phosphorylation. We identify three phosphorylation sites in the N terminus of CaMKKβ, which regulate its Ca(2+)/calmodulin-independent autonomous activity. We then identify the kinases responsible for these phosphorylations as cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3). In addition to regulation of autonomous activity, we find that phosphorylation of CaMKKβ regulates its half-life. We find that cellular levels of CaMKKβ correlate with CDK5 activity and are regulated developmentally in neurons. Finally, we demonstrate that appropriate phosphorylation of CaMKKβ is critical for its role in neurite development. These results reveal a novel regulatory mechanism for CaMKKβ-dependent signaling cascades.  相似文献   

14.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.  相似文献   

15.
Cryptochrome 1 and 2 act as essential components of the central and peripheral circadian clocks for generation of circadian rhythms in mammals. Here we show that mouse cryptochrome 2 (mCRY2) is phosphorylated at Ser-557 in the liver, a well characterized peripheral clock tissue. The Ser-557-phosphorylated form accumulates in the liver during the night in parallel with mCRY2 protein, and the phosphorylated form reaches its maximal level at late night, preceding the peak-time of the protein abundance by approximately 4 h in both light-dark cycle and constant dark conditions. The Ser-557-phosphorylated form of mCRY2 is localized in the nucleus, whereas mCRY2 protein is located in both the cytoplasm and nucleus. Importantly, phosphorylation of mCRY2 at Ser-557 allows subsequent phosphorylation at Ser-553 by glycogen synthase kinase-3beta (GSK-3beta), resulting in efficient degradation of mCRY2 by a proteasome pathway. As assessed by phosphorylation of GSK-3beta at Ser-9, which negatively regulates the kinase activity, GSK-3beta exhibits a circadian rhythm in its activity with a peak from late night to early morning when Ser-557 of mCRY2 is highly phosphorylated. Altogether, the present study demonstrates an important role of sequential phosphorylation at Ser-557/Ser-553 for destabilization of mCRY2 and illustrates a model that the circadian regulation of mCRY2 phosphorylation contributes to rhythmic degradation of mCRY2 protein.  相似文献   

16.
Glycogen synthase kinase-5 (casein kinase-II) phosphorylates glycogen synthase on a serine termed site 5. This residue is just C-terminal to the 3 serines phosphorylated by glycogen synthase kinase-3, which are critical for the hormonal regulation of glycogen synthase in vivo. Although phosphorylation of site 5 does not affect the catalytic activity, it is demonstrated that this modification is a prerequisite for phosphorylation by glycogen synthase kinase-3. Since site 5 is almost fully phosphorylated in vivo under all conditions, the role of glycogen synthase kinase-5 would appear to be a novel one in forming the recognition site for another protein kinase  相似文献   

17.
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with cancers in immunocompromised populations. EBV establishes a latent infection and immortalizes and transforms B lymphocytes. Several latent proteins have profound effects on cellular growth, including activation of NF-kappaB, phosphatidylinositol 3'-OH kinase (PI3K) signaling, and notch signaling. Activation of PI3K can affect the activity of beta-catenin, the target of the wnt signaling pathway. Deregulation of beta-catenin is associated with a number of malignancies. To determine if beta-catenin is regulated by EBV infection, EBV-infected cells were examined for beta-catenin levels and localization. beta-Catenin was increased in EBV-positive tumor cell lines compared to EBV-negative lines, in EBV-infected Burkitt's lymphoma cell lines, and in EBV-transformed lymphoblastoid cell lines (LCL). In contrast to wnt signaling, EBV consistently induced the accumulation of beta-catenin in the cytoplasm but not the nucleus. The beta-catenin regulating kinase, glycogen synthase kinase 3beta (GSK3beta), was shown to be phosphorylated and inactivated in EBV-infected lymphocytes. Inactivated GSK3beta was localized to the nucleus of EBV-infected LCL. Neither the cytoplasmic accumulation of beta-catenin nor the nuclear inactivation of GSK3beta was affected by the inhibition of PI3K signaling. These data indicate that latent infection with EBV has unique effects on beta-catenin signaling that are distinct from activation of wnt and independent of its effects on PI3K.  相似文献   

18.
Neurofibrillary tangles (NFTs) are found in a wide range of neurodegenerative disorders, including Alzheimer's disease. The major component of NFTs is aberrantly hyperphosphorylated microtubule-associated protein tau. Because appropriate in vivo models have been lacking, the role of tau phosphorylation in NFTs formation has remained elusive. Here, we describe a new model in which adenovirus-mediated gene expression of tau, DeltaMEKK, JNK3, and GSK-3beta in COS-7 cells produces most of the pathological phosphorylation epitopes of tau including AT100. Furthermore, this co-expression resulted in the formation of tau aggregates having short fibrils that were detergent-insoluble and Thioflavin-S-reactive. These results suggest that aberrant tau phosphorylation by the combination of these kinases may be involved in "pretangle," oligomeric tau fibril formation in vivo.  相似文献   

19.
Microtubule associated protein tau, which is expressed in six alternatively spliced molecular isoforms in human brain, is abnormally hyperphosphorylated in Alzheimer disease and related tauopathies. Here, we show (i) that GSK-3alpha and neither GSK-3beta nor cdk5 can phosphorylate tau at Ser262 and phosphorylation at Ser235 by cdk5 primes phosphorylation at Thr231 by GSK-3alpha/beta; (ii) that tau isoforms with two N-terminal inserts (tau4L, tau3L) are phosphorylated by cdk5 plus GSK-3 at Thr231 markedly more than isoforms lacking these inserts (tau4, tau3); and (iii) that Thr231 is phosphorylated approximately 50% more in free tau than in microtubule-bound tau, and the phosphorylation at this site results in the dissociation of tau from microtubules. These findings suggest that the phosphorylation of tau at Thr231 and Ser262 by cdk5 plus GSK-3, which inhibits its normal biological activity, is regulated both by its amino terminal inserts and its physical state.  相似文献   

20.
Glycogen synthase kinase 3beta (GSK3beta) is a key component in many biological processes including insulin and Wnt signaling. Since the activation of each signaling pathway results in a decrease in GSK3beta activity, we examined the specificity of their downstream effects in the same cell type. Insulin induces an increased activity of glycogen synthase but has no influence on the protein level of beta-catenin. In contrast, Wnt increases the cytosolic pool of beta-catenin but not glycogen synthase activity. We found that, unlike insulin, neither the phosphorylation status of the serine9 residue of GSK3beta nor the activity of protein kinase B is regulated by Wnt. Although the decrease in GSK3beta activity is required, GSK3beta may not be the limiting component for Wnt signaling in the cells that we examined. Our results suggest that the axin-conductin complexed GSK3beta may be dedicated to Wnt rather than insulin signaling. Insulin and Wnt pathways regulate GSK3beta through different mechanisms, and therefore lead to distinct downstream events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号