首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The function of the human cystic fibrosis transmembrane conductance regulator (CFTR) protein as a chloride channel or transport regulator involves cellular ATP binding and cleavage. Here we describe that human CFTR expressed in insect (Sf9) cell membranes shows specific, Mg2+-dependent nucleotide occlusion, detected by covalent labeling with 8-azido-[alpha-32P]ATP. Nucleotide occlusion in CFTR requires incubation at 37 degrees C, and the occluded nucleotide can not be removed by repeated washings of the membranes with cold MgATP-containing medium. By using limited tryptic digestion of the labeled CFTR protein we found that the adenine nucleotide occlusion preferentially occurred in the N-terminal nucleotide binding domain (NBD). Addition of the ATPase inhibitor vanadate, which stabilizes an open state of the CFTR chloride channel, produced an increased nucleotide occlusion and resulted in the labeling of both the N-terminal and C-terminal NBDs. Protein modification with N-ethylmaleimide prevented both vanadate-dependent and -independent nucleotide occlusion in CFTR. The pattern of nucleotide occlusion indicates significant differences in the ATP hydrolyzing activities of the two NBDs, which may explain their different roles in the CFTR channel regulation.  相似文献   

2.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters, ubiquitous proteins found in all kingdoms of life, catalyze substrates translocation across biological membranes using the free energy of ATP hydrolysis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of this superfamily in that it functions as an ATP-gated chloride channel. Despite difference in function, recent studies suggest that the CFTR chloride channel and the exporter members of the ABC protein family may share an evolutionary origin. Although ABC exporters harness the free energy of ATP hydrolysis to fuel a transport cycle, for CFTR, ATP-induced dimerization of its nucleotide-binding domains (NBDs) and subsequent hydrolysis-triggered dimer separation are proposed to be coupled, respectively, to the opening and closing of the gate in its transmembrane domains. In this study, by using nonhydrolyzable ATP analogues, such as pyrophosphate or adenylyl-imidodiphosphate as baits, we captured a short-lived state (state X), which distinguishes itself from the previously identified long-lived C2 closed state by its fast response to these nonhydrolyzable ligands. As state X is caught during the decay phase of channel closing upon washout of the ligand ATP but before the channel sojourns to the C2 closed state, it likely emerges after the bound ATP in the catalysis-competent site has been hydrolyzed and the hydrolytic products have been released. Thus, this newly identified post-hydrolytic state may share a similar conformation of NBDs as the C2 closed state (i.e., a partially separated NBD and a vacated ATP-binding pocket). The significance of this novel state in understanding the structural basis of CFTR gating is discussed.  相似文献   

3.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel situated on the apical membrane of epithelial cells. Our recent studies of purified, reconstituted CFTR revealed that it also functions as an ATPase and that there may be coupling between ATP hydrolysis and channel gating. Both the ATP turnover rate and channel gating are slow, in the range of 0.2 to 1 s–1, and both activities are suppressed in a disease-causing mutation situated in a putative nucleotide binding motif. Our future studies using purified protein will be directed toward understanding the structural basis and mechanism for coupling between hydrolysis and channel function.  相似文献   

4.
CFTR, the protein defective in cystic fibrosis, functions as a Cl- channel regulated by cAMP-dependent protein kinase (PKA). CFTR is also an ATPase, comprising two nucleotide-binding domains (NBDs) thought to bind and hydrolyze ATP. In hydrolyzable nucleoside triphosphates, PKA-phosphorylated CFTR channels open into bursts, lasting on the order of a second, from closed (interburst) intervals of a second or more. To investigate nucleotide interactions underlying channel gating, we examined photolabeling by [alpha32P]8-N3ATP or [gamma32P]8-N3ATP of intact CFTR channels expressed in HEK293T cells or Xenopus oocytes. We also exploited split CFTR channels to distinguish photolabeling at NBD1 from that at NBD2. To examine simple binding of nucleotide in the absence of hydrolysis and gating reactions, we photolabeled after incubation at 0 degrees C with no washing. Nucleotide interactions under gating conditions were probed by photolabeling after incubation at 30 degrees C, with extensive washing, also at 30 degrees C. Phosphorylation of CFTR by PKA only slightly influenced photolabeling after either protocol. Strikingly, at 30 degrees C nucleotide remained tightly bound at NBD1 for many minutes, in the form of nonhydrolyzed nucleoside triphosphate. As nucleotide-dependent gating of CFTR channels occurred on the time scale of seconds under comparable conditions, this suggests that the nucleotide interactions, including hydrolysis, that time CFTR channel opening and closing occur predominantly at NBD2. Vanadate also appeared to act at NBD2, presumably interrupting its hydrolytic cycle, and markedly delayed termination of channel open bursts. Vanadate somewhat increased the magnitude, but did not alter the rate, of the slow loss of nucleotide tightly bound at NBD1. Kinetic analysis of channel gating in Mg8-N3ATP or MgATP reveals that the rate-limiting step for CFTR channel opening at saturating [nucleotide] follows nucleotide binding to both NBDs. We propose that ATP remains tightly bound or occluded at CFTR's NBD1 for long periods, that binding of ATP at NBD2 leads to channel opening wherupon its hydrolysis prompts channel closing, and that phosphorylation acts like an automobile clutch that engages the NBD events to drive gating of the transmembrane ion pore.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a member of the ATP-binding cassette (ABC) protein family, most members of which act as active transporters. Actively transporting ABC proteins are thought to alternate between "outwardly facing" and "inwardly facing" conformations of the transmembrane substrate pathway. In CFTR, it is assumed that the outwardly facing conformation corresponds to the channel open state, based on homology with other ABC proteins. We have used patch clamp recording to quantify the rate of access of cysteine-reactive probes to cysteines introduced into two different transmembrane regions of CFTR from both the intracellular and extracellular solutions. Two probes, the large [2-sulfonatoethyl]methanethiosulfonate (MTSES) molecule and permeant Au(CN)(2)(-) ions, were applied to either side of the membrane to modify cysteines substituted for Leu-102 (first transmembrane region) and Thr-338 (sixth transmembrane region). Channel opening and closing were altered by mutations in the nucleotide binding domains of the channel. We find that, for both MTSES and Au(CN)(2)(-), access to these two cysteines from the cytoplasmic side is faster in open channels, whereas access to these same sites from the extracellular side is faster in closed channels. These results are consistent with alternating access to the transmembrane regions, however with the open state facing inwardly and the closed state facing outwardly. Our findings therefore prompt revision of current CFTR structural and mechanistic models, as well as having broader implications for transport mechanisms in all ABC proteins. Our results also suggest possible locations of both functional and dysfunctional ("vestigial") gates within the CFTR permeation pathway.  相似文献   

6.
Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are controlled by ATP binding and hydrolysis by its nucleotide binding domains (NBDs). This is presumed to control opening of a single "gate" within the permeation pathway, however, the location of such a gate has not been described. We used patch clamp recording to monitor access of cytosolic cysteine reactive reagents to cysteines introduced into different transmembrane (TM) regions in a cysteine-less form of CFTR. The rate of modification of Q98C (TM1) and I344C (TM6) by both [2-sulfonatoethyl] methanethiosulfonate (MTSES) and permeant Au(CN)(2)(-) ions was reduced when ATP concentration was reduced from 1mM to 10μM, and modification by MTSES was accelerated when 2mM pyrophosphate was applied to prevent channel closure. Modification of K95C (TM1) and V345C (TM6) was not affected by these manoeuvres. We also manipulated gating by introducing the mutations K464A (in NBD1) and E1371Q (in NBD2). The rate of modification of Q98C and I344C by both MTSES and Au(CN)(2)(-) was decreased by K464A and increased by E1371Q, whereas modification of K95C and V345C was not affected. These results suggest that access from the cytoplasm to K95 and V345 is similar in open and closed channels. In contrast, modifying ATP-dependent channel gating alters access to Q98 and I344, located further into the pore. We propose that ATP-dependent gating of CFTR is associated with the opening and closing of a gate within the permeation pathway at the level of these pore-lining amino acids.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ion channel in that its gating is coupled to an intrinsic enzymatic activity (ATP hydrolysis). This enzymatic activity derives from the evolutionary origin of CFTR as an ATP-binding cassette transporter. CFTR gating is distinct from that of a typical ligand-gated channel because its ligand (ATP) is usually consumed during the gating cycle. However, recent findings indicate that CFTR gating exhibits allosteric properties that are common to conventional ligand-gated channels (e.g. unliganded openings and constitutive mutations). Here, we provide a unified view of CFTR gating that combines the allosterism of a ligand-gated channel with its unique enzymatic activity.  相似文献   

8.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) protein superfamily. Unlike most other ABC proteins that function as active transporters, CFTR is an ATP-gated chloride channel. The opening of CFTR’s gate is associated with ATP-induced dimerization of its two nucleotide-binding domains (NBD1 and NBD2), whereas gate closure is facilitated by ATP hydrolysis-triggered partial separation of the NBDs. This generally held theme of CFTR gating—a strict coupling between the ATP hydrolysis cycle and the gating cycle—is put to the test by our recent finding of a short-lived, post-hydrolytic state that can bind ATP and reenter the ATP-induced original open state. We accidentally found a mutant CFTR channel that exhibits two distinct open conductance states, the smaller O1 state and the larger O2 state. In the presence of ATP, the transition between the two states follows a preferred O1→O2 order, a telltale sign of a violation of microscopic reversibility, hence demanding an external energy input likely from ATP hydrolysis, as such preferred gating transition was abolished in a hydrolysis-deficient mutant. Interestingly, we also observed a considerable amount of opening events that contain more than one O1→O2 transition, indicating that more than one ATP molecule may be hydrolyzed within an opening burst. We thus conclude a nonintegral stoichiometry between the gating cycle and ATP consumption. Our results lead to a six-state gating model conforming to the classical allosteric mechanism: both NBDs and transmembrane domains hold a certain degree of autonomy, whereas the conformational change in one domain will facilitate the conformational change in the other domain.  相似文献   

9.
Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ATP-binding cassette transporters in that it functions as an ion channel. In CFTR, ATP binding opens the channel, and its subsequent hydrolysis causes channel closure. We studied the conformational changes in the pore-lining sixth transmembrane segment upon ATP binding by measuring state-dependent changes in accessibility of substituted cysteines to methanethiosulfonate reagents. Modification rates of three residues (resides 331, 333, and 335) near the extracellular side were 10-1000-fold slower in the open state than in the closed state. Introduction of a charged residue by chemical modification at two of these positions (resides 331 and 333) affected CFTR single-channel gating. In contrast, modifications of pore-lining residues 334 and 338 were not state-dependent. Our results suggest that ATP binding induces a modest conformational change in the sixth transmembrane segment, and this conformational change is coupled to the gating mechanism that regulates ion conduction. These results may establish a structural basis of gating involving the dynamic rearrangement of transmembrane domains necessary for vectorial transport of substrates in ATP-binding cassette transporters.  相似文献   

10.
The CFTR chloride channel is regulated by phosphorylation by protein kinases, especially PKA, and by nucleotides interacting with the two nucleotide binding domains, NBD-A and NBD-B. Giant excised inside-out membrane patches from Xenopus oocytes expressing human epithelial cystic fibrosis transmembrane conductance regulator (CFTR) were tested for their chloride conductance in response to the application of PKA and nucleotides. Rapid changes in the concentration of ATP, its nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP), its photolabile derivative ATP-P3-[1-(2-nitrophenyl)ethyl]ester, or ADP led to changes in chloride conductance with characteristic time constants, which reflected interaction of CFTR with these nucleotides. The conductance changes of strongly phosphorylated channels were slower than those of partially phosphorylated CFTR. AMP-PNP decelerated relaxations of conductance increase and decay, whereas ATP-P3-[1-(2-nitrophenyl)ethyl]ester only decelerated the conductance increase upon ATP addition. ADP decelerated the conductance increase upon ATP addition and accelerated the conductance decay upon ATP withdrawal. The results present the first direct evidence that AMP-PNP binds to two sites on the CFTR. The effects of ADP also suggest two different binding sites because of the two different modes of inhibition observed: it competes with ATP for binding (to NBD-A) on the closed channel, but it also binds to channels opened by ATP, which might either reflect binding to NBD-A (i.e., product inhibition in the hydrolysis cycle) or allosteric binding to NBD-B, which accelerates the hydrolysis cycle at NBD-A.  相似文献   

11.
Gating of the cystic fibrosis transmembrane conductance regulator (CFTR) involves a coordinated action of ATP on two nucleotide binding domains (NBD1 and NBD2). Previous studies using nonhydrolyzable ATP analogues and NBD mutant CFTR have suggested that nucleotide hydrolysis at NBD1 is required for opening of the channel, while hydrolysis of nucleotides at NBD2 controls channel closing. We studied ATP-dependent gating of CFTR in excised inside-out patches from stably transfected NIH3T3 cells. Single channel kinetics of CFTR gating at different [ATP] were analyzed. The closed time constant (tauc) decreased with increasing [ATP] to a minimum value of approximately 0.43 s at [ATP] >1.00 mM. The open time constant (tauo) increased with increasing [ATP] with a minimal tauo of approximately 260 ms. Kinetic analysis of K1250A-CFTR, a mutant that abolishes ATP hydrolysis at NBD2, reveals the presence of two open states. A short open state with a time constant of approximately 250 ms is dominant at low ATP concentrations (10 microM) and a much longer open state with a time constant of approximately 3 min is present at millimolar ATP. These data suggest that nucleotide binding and hydrolysis at NBD1 is coupled to channel opening and that the channel can close without nucleotide interaction with NBD2. A quantitative cyclic gating scheme with microscopic irreversibility was constructed based on the kinetic parameters derived from single-channel analysis. The estimated values of the kinetic parameters suggest that NBD1 and NBD2 are neither functionally nor biochemically equivalent.  相似文献   

12.
Randak C  Welsh MJ 《Cell》2003,115(7):837-850
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP binding cassette (ABC) transporter family. Like other ABC transporters, it can hydrolyze ATP. Yet while ATP hydrolysis influences channel gating, it has long seemed puzzling that CFTR would require this reaction because anions flow passively through CFTR. Moreover, no other ion channel is known to require the large energy of ATP hydrolysis to gate. We found that CFTR also has adenylate kinase activity (ATP + AMP <=> ADP + ADP) that regulates gating. When functioning as an adenylate kinase, CFTR showed positive cooperativity for ATP suggesting its two nucleotide binding domains may dimerize. Thus, channel activity could be regulated by two different enzymatic reactions, ATPase and adenylate kinase, that share a common ATP binding site in the second nucleotide binding domain. At physiologic nucleotide concentrations, adenylate kinase activity, rather than ATPase activity may control gating, and therefore involve little energy consumption.  相似文献   

13.
After phosphorylation by protein kinase A, gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by the interaction of ATP with its nucleotide binding domains (NBDs). Models of this gating regulation have proposed that ATP hydrolysis at NBD1 and NBD2 may drive channel opening and closing, respectively (reviewed in Nagel, G. (1999) Biochim. Biophys. Acta 1461, 263-274). However, as yet there has been little biochemical confirmation of the predictions of these models. We have employed photoaffinity labeling with 8-azido-ATP, which supports channel gating as effectively as ATP to evaluate interactions with each NBD in intact membrane-bound CFTR. Mutagenesis of Walker A lysine residues crucial for azido-ATP hydrolysis to generate the azido-ADP that is trapped by vanadate indicated a greater role of NBD1 than NBD2. Separation of the domains by limited trypsin digestion and enrichment by immunoprecipitation confirmed greater and more stable nucleotide trapping at NBD1. This asymmetry of the two domains in interactions with nucleotides was reflected most emphatically in the response to the nonhydrolyzable ATP analogue, 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP), which in the gating models was proposed to bind with high affinity to NBD2 causing inhibition of ATP hydrolysis there postulated to drive channel closing. Instead we found a strong competitive inhibition of nucleotide hydrolysis and trapping at NBD1 and a simultaneous enhancement at NBD2. This argues strongly that AMP-PNP does not inhibit ATP hydrolysis at NBD2 and thereby questions the relevance of hydrolysis at that domain to channel closing.  相似文献   

14.
The CFTR [CF (cystic fibrosis) transmembrane conductance regulator] chloride channel is activated by cyclic nucleotide-dependent phosphorylation and ATP binding, but also by non-phosphorylation-dependent mechanisms. Other CFTR functions such as regulation of exocytotic protein secretion are also activated by cyclic nucleotide elevating agents. A soluble protein comprising the first NBD (nucleotide-binding domain) and R-domain of CFTR (NBD1-R) was synthesized to determine directly whether CFTR binds cAMP. An equilibrium radioligand-binding assay was developed, firstly to show that, as for full-length CFTR, the NBD1-R protein bound ATP. Half-maximal displacement of [3H]ATP by non-radioactive ATP at 3.5 microM and 3.1 mM was demonstrated. [3H]cAMP bound to the protein with different affinities from ATP (half-maximal displacement by cAMP at 2.6 and 167 microM). Introduction of a mutation (T421A) in a motif predicted to be important for cyclic nucleotide binding decreased the higher affinity binding of cAMP to 9.2 microM. The anti-CFTR antibody (MPNB) that inhibits CFTR-mediated protein secretion also inhibited cAMP binding. Thus binding of cAMP to CFTR is consistent with a role in activation of protein secretion, a process defective in CF gland cells. Furthermore, the binding site may be important in the mechanism by which drugs activate mutant CFTR and correct defective DeltaF508-CFTR trafficking.  相似文献   

15.
ATP hydrolysis by a CFTR domain: pharmacology and effects of G551D mutation   总被引:2,自引:0,他引:2  
Residues 417-830 of the cystic fibrosis transmembrane conductance regulator (CFTR) were expressed as a glutathione-S-transferase fusion protein. This fusion protein, NBD1/R/GST, contains the regulatory and first nucleotide binding domains of CFTR. NBD1/R/GST hydrolyzed ATP with a K(M) (60 microM) and V(max) (330 nmol/min/mg) that differed from those reported for CFTR and for a peptide containing CFTR residues 433-589. The ATPase inhibitor profile of NBD1/R/GST indicates that CFTR resembles P-glycoprotein with respect to the NBD1 ATPase catalytic mechanism. ATP hydrolysis by NBD1/R/GST was unaffected by genistein, glybenclamide, and other agents known to affect CFTR's chloride channel function, suggesting that these agents do not act by directly influencing the ATPase function of NBD1. The disease-causing mutation, G551D, reduced ATP hydrolysis by NBD1/R/GST by increasing the K(M) for ATP fourfold. This suggests that when G551D occurs in patients with cystic fibrosis, it affects CFTR function by reducing the affinity of NBD1 for ATP.  相似文献   

16.
We describe biochemical and structural studies of the isolated cystic fibrosis transmembrane conductance regulator (CFTR) protein. Using electron cryomicroscopy, low resolution three-dimensional structures have been obtained for the non-phosphorylated protein in the absence of nucleotide and for the phosphorylated protein with ATP. In the latter state, the cytosolic nucleotide-binding domains move closer together, forming a more compact packing arrangement. Associated with this is a reorganization within the cylindrical transmembrane domains, consistent with a shift from an inward-facing to outward-facing configuration. A region of density in the non-phosphorylated protein that extends from the bottom of the cytosolic regions up to the transmembrane domains is hypothesised to represent the unique regulatory region of CFTR. These data offer insights into the architecture of this ATP-binding cassette protein, and shed light on the global motions associated with nucleotide binding and priming of the chloride channel via phosphorylation of the regulatory region.  相似文献   

17.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1-NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments.  相似文献   

18.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2.  相似文献   

19.
The genetic disease cystic fibrosis is caused by defects in the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). CFTR belongs to the family of ABC transporters. In contrast to most other members of this family which transport substrates actively across a membrane, the main function of CFTR is to regulate passive flux of substrates across the plasma membrane. Chloride channel activity of CFTR is dependent on protein phosphorylation and presence of nucleoside triphosphates. From electrophysiological studies of CFTR detailed models of its regulation by phosphorylation and nucleotide interaction have evolved. These investigations provide ample evidence that ATP hydrolysis is crucial for CFTR gating. It becomes apparent that the two nucleotide binding domains on CFTR not only diverge strongly in sequence, but also in function. Based on previous models and taking into account new data from pre-steady-state experiments, a refined model for the action of nucleotides at two nucleotide binding domains was recently proposed.  相似文献   

20.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein that is mutated in patients suffering from cystic fibrosis. Here we report the purification and first crystallization of wild-type human CFTR. Functional characterization of the material showed it to be highly active. Electron crystallography of negatively stained two-dimensional crystals of CFTR has revealed the overall architecture of this channel for two different conformational states. These show a strong structural homology to two conformational states of another eukaryotic ATP-binding cassette transporter, P-glycoprotein. In contrast to P-glycoprotein, however, both conformational states can be observed in the presence of a nucleotide, which may be related to the role of CFTR as an ion channel rather than a transporter. The hypothesis that the two conformations could represent the "open" and "closed" states of the channel is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号