首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choleraphage phi 149 differentiates the two biotypes, classical and el tor, of Vibrio cholerae. This phage cannot replicate in V. cholerae biotype el tor cells because the concatemeric DNA intermediates produced are unstable and cannot be chased to mature phage DNA. A V. cholerae biotype el tor gene coding for a 14,000-Da inner membrane protein which destabilizes the concatemeric DNA intermediates by hindering their binding to the cell membrane has been identified. Presumably, a 22,000-Da V. cholerae biotype el tor protein might also have a role in conferring phage phi 149 resistance to cells belonging to the biotype el tor. A nucleotide sequence homologous to the 1.2-kb V. cholerae biotype el tor DNA coding for both the 14,000- and 22,000-Da proteins is present in all strains of classical vibrios but is not transcribed. The nucleotide sequence of the gene coding for the 14,000-Da protein has been determined.  相似文献   

2.
Choleraphage phi 149 adsorbed irreversibly to Vibrio cholerae biotype el tor cells, and 50% of the injected phage DNA bound to the cell membrane. Although no infectious centers were produced at any time during infection, the host macromolecular syntheses were shut off and the host DNA underwent chloramphenicol-inhibitable degradation. Synthesis of monomeric phage DNA continued similar to that observed in the permissive host. However, the concatemeric DNA intermediates produced were unstable and could not be chased to mature phage DNA. Pulse-labeling of UV-irradiated infected cells at different times during infection allowed identification of phage-specific proteins made in this nonpermissive host. Although most of the early proteins were made, only some of the late proteins were transiently synthesized.  相似文献   

3.
32P-Labelled tRNA was isolated from uninfected and phage phi 149-infected Vibrio cholerae cells. These tRNA preparations were then hybridised with DNA isolated from phage phi 149. Significant hybridisation was observed only with tRNA from phage phi 149-infected cells. This strongly suggests that infection of classical vibrio with phage phi 149 results in the synthesis of phage-specific tRNA molecules.  相似文献   

4.
Bacteriophage P22 is thought to package its double-stranded DNA chromosome from concatemeric replicating DNA in a "processive" sequential fashion. According to this model, during the initial packaging event in such a series the packaging apparatus recognizes a nucleotide sequence, called pac, on the DNA, and then condenses DNA within the coat protein shell unidirectionally from that point. DNA ends are generated near the pac site before or during the condensation reaction. The opposite end of the mature chromosome is created by a cut made in the DNA after a complete chromosome is condensed within the phage head. Subsequent packaging events on that concatemeric DNA begin at the end generated by the headful cut of the previous event and proceed in the same direction as the previous event. We report here the identification of a consensus nucleotide sequence for the pac site, and present evidence that supports the idea that the gene 3 protein is a central participant in this recognition event. In addition, we tentatively locate the portion of the gene 3 protein that contacts the pac site during the initiation of packaging.  相似文献   

5.
End structure and mechanism of packaging of bacteriophage T4 DNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
We analyzed by restriction enzyme digestion the end structure of T4 phage DNA by comparing mature, concatemeric, first-packaged, and incompletely packaged DNAs. The structure of mature DNA was also studied using 3' end labeling with terminal transferase. Our data support the hypothesis that T4 DNA packaging is not initiated at specific packaging initiation sequences on the concatemeric precursor (cos or pac site mechanisms) but by a different packaging mechanism.  相似文献   

6.
J C Alonso  G Lüder    T A Trautner 《The EMBO journal》1986,5(13):3723-3728
We had previously proposed that the production of concatemeric plasmid DNA in plasmid-transducing SPP1 particles is a consequence of phage-directed rolling-circle-type replication of plasmid DNA. The production of such DNA was greatly enhanced when DNA/DNA homology was provided between phage and plasmid DNAs (facilitation of transduction). Here we present evidence that synthesis of concatemeric plasmid DNA can proceed after phage infection under conditions non-permissive for plasmid replication. We also propose that the naturally occurring homology between plasmid and phage is sufficient to account for the frequency of transduction observed in the absence of facilitating homology. Homology of greater than 47 bp gives the maximal facilitation of plasmid transduction. Recombination is not an essential part in the synthesis of concatemeric plasmid DNA.  相似文献   

7.
Bacteriophage MB78 is a virulent phage ofSalmonella typhimurium. The viral DNA is 42 kb in size and seems to be circularly permuted. We show that viral DNA replication is through concatemeric DNA formation which is subsequently converted into full length DNA through headful packaging. A restriction map of MB78 DNA for six restriction endonucleases e.g.BgIII,PvuII, ECORI, ClaI, SalI and SmaI has been constructed. The yield of certain fragments in less than molar amount is explained in terms of permutation and the headful mechanism of packaging. The packaging site (pac site) has been suggested.  相似文献   

8.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

9.
The fatty acid composition of the membrane of the conditional auxotroph fabB2 can be altered by allowing the cells to grow at non-permissive temperature (37°C) in the presence of a cis-unsaturated fatty acid. The phage 9NA, a virulent phage ofSalmonella typhimurium, can not multiply in fabB2. Synthesis and maturation of the phage DNA are differentially affected by variation in the fatty acid composition of the cell membrane. The replicating DNA associates with the membrane complex, the site of DNA synthesis. The association is comparatively weak in oleic, claidic, palmitoleic, palmitelaidic and linolelaidic acid enriched cells. When the cells are grown in the presence of palmitoleic acid, a large pool of concatemeric phage DNA accumulates in the cytoplasm within 10 min of infection. The conversion of concatemeric DNA to monomeric one i.e., mature phage length DNA, is inhibited in such cells. The presence of concatemeric DNA can be visualized by electron microscope. Such a situation is not observed when the cells are grown in media supplemented with other types of unsaturated fatty acids. The mechanism by which the host cell membrane lipid controls phage development is yet to be worked out.  相似文献   

10.
Bacteriophage P22 DNA packaging events occur in processive series on concatemeric phage DNA molecules. At the point where such series initiate, the DNA is recognized at a site called pac, and most molecular left ends are generated within six short regions called end sites, which are present in a 120 base-pair region surrounding the pac site. The bacteriophage P22 genes 2 and 3 proteins are required for successful generation of these ends and DNA packaging during progeny virion assembly. Mutants lacking the 162-amino-acid gene 3 protein replicate DNA and assemble functional procapsids. In this report we describe the nucleotide changes and DNA packaging phenotypes of a number of missense mutations of gene 3, which give the phage a higher than normal frequency of generalized transduction. In cells infected by these mutants, more packaging events initiate on the host chromosome than in wild-type infections, so the mutations are thought to affect the specificity of packaging initiation. In addition to having this phenotype, these mutations affect the process of phage DNA packaging in detectable ways. They may: (1) alter the target site specificity for packaging; (2) make target site recognition more promiscuous; (3) affect end site utilization; (4) alter the pac site; and (5) cause apparent random DNA packaging series initiation on phage DNA.  相似文献   

11.
Choleraphage phi 138 contains a linear, double-stranded, circularly permuted DNA molecule of 30 X 10(6) daltons or 45 kilobase pairs. Upon infection, the host DNA is degraded, and synthesis of phage-specific DNA is detectable 20 min after infection. The phage utilizes primarily the host DNA degradation products for its own DNA synthesis. A physical map of phi 138 DNA was constructed with the restriction endonucleases Bg/II, HindIII, and PstI. A concatemeric replicative DNA intermediate equivalent to eight mature genome lengths was identified. The concatemer was shown to be the precursor for the synthesis of mature bacteriophage DNA which is subsequently packaged by a headful mechanism.  相似文献   

12.
Bacteriophage MB78, a virulent phage ofSalmonella typhimurium cannot grow in rifampicin-resistant mutant (rif-39) of the host having altered RNA polymerase. The temperate phage P22 which cannot multiply in presence of the virulent phage MB78 can, however, help MB78 to overcome replication inhibition in rif-39. The processing of concatemeric phage DNA to monomer is blocked in this nonpermissive host. Superinfection with P22 induces synthesis of at least five P22 specific polypeptides which help phage MB78 in the processing of the concatemeric DNA and maturation of phage particles.  相似文献   

13.
The molecular processes involved in the transduction of small staphylococcal plasmids by a generalized transducing phage, phi 11, have been analysed. The plasmids are transduced in the form of linear concatemers containing only plasmid DNA; plasmid-initiated replication is required for their generation but additive interplasmid recombination is not. Concatemers are probably generated by the interaction of one or more phage functions with replicating plasmid DNA. Insertion of any restriction fragment of the phage into the plasmid causes an approximately 10(5)-fold increase in transduction frequency, regardless of the size or genetic content of the fragment. The resulting transducing particles (Hft particles) contain mostly pure linear concatemers composed of tandem repeats of the plasmid::phage chimera, and their production requires active plasmid-initiated replication. The high frequency of transduction is a consequence of homologous recombination between the linear chimeric and phage concatemers, which has the effect of introducing an efficient pac site into the former. Following introduction into lysogenic recipient bacteria, the transducing DNA is first converted to the supercoiled form, then processed to monomers by a mechanism that requires the active participation of the plasmid replication system.  相似文献   

14.
A Aoyama  M Hayashi 《Cell》1986,47(1):99-106
Replication of a replicative form DNA of bacteriophage phi X174 initiates by rolling-circle synthesis of the viral DNA followed by discontinuous synthesis of the complementary DNA. Gene C protein of phi X174, which is involved in DNA packaging, inhibits the rolling-circle DNA synthesis by binding to the initiation complex in vitro. The gene C protein-associated initiation complex can synthesize and package the viral DNA to produce infectious phage when supplemented with phi X174 gene J protein and the prohead. Multiple rounds of phage synthesis occur without dissociation of the gene C protein from the complex. These results indicate that gene C protein is central in the switch from replication of a replicative form DNA to synthesis and concomitant packaging of viral DNA into phage capsid, which occurs in the late stage of infection.  相似文献   

15.
Bacteriophage SPP1 infection of Bacillus subtilis cells bearing plasmids induces the synthesis of multigenome-length plasmid molecules. Two independent pathways can account for this synthesis. In one of those, homology to the phage genome is required, whereas in the other such homology is not a prerequisite. In wild type cells both modes overlap. In dnaB(Ts), at non permissive temperature, or in recE polA strains the main concatemeric plasmid replication mode is the homology-dependent plasmid (hdp) mode. The rate of recombination-dependent concatemeric plasmid DNA synthesis is a consequence of a phage-plasmid interaction which leads to chimeric phage::plasmid DNA. The second mode, which is an homology-independent plasmid (hip) mode seems to be triggered upon the synthesis of a phage encoded product(s) (e.g. inactivation of the exonuclease V enzyme).  相似文献   

16.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

17.
The assembly of phage phi 29 occurs by a single pathway, and DNA-protein (DNA-gp3) has been shown to be an intermediate on the assembly pathway by a highly efficient in vitro complementation. At 30 degrees C, about one-half of the viral DNA synthesized was assembled into mature phage, and the absolute plating efficiency of phi 29 approached unity. DNA packaging at 45 degrees C was comparable to that at 30 degrees C, but the burst size was reduced by one-third. When cells infected with mutant ts3(132) at 30 degrees C to permit DNA synthesis were shifted to 45 degrees C before phage assembly, DNA synthesis ceased and no phage were produced. However, a variable amount of DNA packaging occurred. Superinfection by wild-type phage reinitiated ts3(132) DNA synthesis at 45 degrees C, and if native gp3 was covalently linked to this DNA during superinfection replication, it was effectively packaged and assembled. Treatment of the DNA-gp3 complex with trypsin prevented in vitro maturation of phi 29, although substantial DNA packaging occurred. A functional gp3 linked to the 5' termini of phi 29 DNA is a requirement for effective phage assembly in vivo and in vitro.  相似文献   

18.
19.
Recombination-dependent concatemeric plasmid replication.   总被引:10,自引:0,他引:10       下载免费PDF全文
The replication of covalently closed circular supercoiled (form I) DNA in prokaryotes is generally controlled at the initiation level by a rate-limiting effector. Once initiated, replication proceeds via one of two possible modes (theta or sigma replication) which do not rely on functions involved in DNA repair and general recombination. Recently, a novel plasmid replication mode, leading to the accumulation of linear multigenome-length plasmid concatemers in both gram-positive and gram-negative bacteria, has been described. Unlike form I DNA replication, an intermediate recombination step is most probably involved in the initiation of concatemeric plasmid DNA replication. On the basis of structural and functional studies, we infer that recombination-dependent plasmid replication shares important features with phage late replication modes and, in several aspects, parallels the synthesis of plasmid concatemers in phage-infected cells. The characterization of the concatemeric plasmid replication mode has allowed new insights into the mechanisms of DNA replication and recombination in prokaryotes.  相似文献   

20.
We have examined the localization of DNA replication of the Bacillus subtilis phage phi 29 by immunofluorescence. To determine where phage replication was localized within infected cells, we examined the distribution of phage replication proteins and the sites of incorporation of nucleotide analogues into phage DNA. On initiation of replication, the phage DNA localized to a single focus within the cell, nearly always towards one end of the host cell nucleoid. At later stages of the infection cycle, phage replication was found to have redistributed to multiple sites around the periphery of the nucleoid, just under the cell membrane. Towards the end of the cycle, phage DNA was once again redistributed to become located within the bulk of the nucleoid. Efficient redistribution of replicating phage DNA from the initial replication site to various sites surrounding the nucleoid was found to be dependent on the phage protein p16.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号