首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

2.
1. The deposition of triphosphoinositide and diphosphoinositide in rat and guinea-pig cerebral hemispheres during growth was measured. 2. The maximum increase in concentration of both of these phospholipids occurs during the period of myelination, but in the rat some di- and tri-phosphoinositide is present before significant myelination begins. 3. In guinea-pig cerebral hemispheres the polyphosphoinositides remaining after post-mortem breakdown are selectively enriched in dissected white matter compared with grey matter. 4. The polyphosphoinositides in the cerebral hemispheres of rats were labelled with injected (32)P very rapidly; the specific radioactivities were in the order triphosphoinositide>diphosphoinositide>monophosphoinositide>total lipid phosphorus. 5. The synthesis of triphosphoinositide in rat forebrain occurs at an appreciable rate before, and at the start of, myelination, but the amount formed per gram of tissue is four to five times greater in adult rat brains, thus maintaining a constant turnover time (about 1hr.) for the whole triphosphoinositide fraction. This indicates that the rapid turnover of triphosphoinositide is independent of myelin deposition. 6. The specific radioactivity of the brain acid-soluble phosphorus pool referred to a constant dose of (32)P/g. body wt. falls rapidly with age, reaching a minimum at 13-14 days, and then rises again. The specific radioactivities of the polyphosphoinositides reflect this change. 7. Part of the polyphosphoinositides in rat and guinea-pig cerebral hemispheres is rapidly hydrolysed post mortem leaving a stable portion resistant to further breakdown. 8. The rate and extent of post-mortem hydrolysis of the polyphosphoinositides in both species decrease with age. 9. After (32)P labelling, the specific radioactivity of the triphosphoinositide remaining in the cerebral hemispheres of the rat after post-mortem breakdown is lower than the original triphosphoinositide fraction, suggesting two metabolically distinct pools.  相似文献   

3.
1. A method is presented for the determination of the di- and tri-phosphoinositide in animal tissues. 2. The polyphosphoinositides are quantitatively extracted into chloroform-methanol-hydrochloric acid solvent after a preliminary chloroform-methanol (1:1, v/v) extraction to remove the bulk of the other phospholipids. On washing this extract with n-hydrochloric acid the polyphosphoinositides pass completely into the lower chloroform-rich phase. Their concentrations in the lower phase are determined by chromatography on formaldehyde-treated paper or chromatography and ionophoresis of the acid hydrolysis products. 3. When guinea-pig brain is extracted by the method of Folch (1942), considerable hydrolysis of the triphosphoinositide and accumulation of diphosphoinositide occurs during the initial acetone extraction. 4. The tri- and di-phosphoinositide contents of rat and guinea-pig brain decline substantially within a few minutes after death. 5. The concentrations of tri- and di-phosphoinositide in rat brain are not changed by insulin-hypoglycaemia or electrical stimulation. 6. Examination of frozen rat tissues showed that the brain contained the highest concentration of polyphosphoinositides. Much smaller amounts are present in kidney, and only trace quantities in liver and lung. None could be detected in spleen, heart and skeletal muscle.  相似文献   

4.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [gamma-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250,000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes. These results suggest that the formation of triphosphoinositide rather than the (C2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

5.
Exchange of phospholipids between brain membranes in vitro   总被引:11,自引:6,他引:5       下载免费PDF全文
1. When unlabelled mitochondria from guinea-pig brain were incubated with a (32)P-labelled microsomal fraction from brain there was a transfer of phospholipid to the mitochondria, which could not be accounted for by an aggregation of microsomes and mitochondria or an exchange with microsomes contaminating the mitochondria. Under similar circumstances there was a transfer of phospholipid from (32)P-labelled mitochondria to microsomes, indicating that the process was one of exchange. 2. The transfer from microsomes was greatly stimulated by a non-dialysable heat-labile macromolecular component in the brain supernatant fraction but not by the concentration of the particulate fractions. 3. Phospholipid-exchange processes occurred most readily between pH7 and 7.5 and were inhibited by the presence of myelin and on the addition of lysophosphatidylcholine. 4. The rates of transfer of individual phospholipids from brain microsomes to mitochondria were similar. 5. (32)P-labelled microsomes could slowly donate phospholipid to the isolated synaptosomal (nerve-ending) fraction but the phospholipids of the myelin fraction did not exchange. 6. Subfractionation of the synaptosomal fraction after [(32)P]phospholipid transfer showed that the mitochondria were most actively labelled during the incubation. All of the isolated individual synaptosomal membranes were capable of acquiring phospholipid on incubation with a (32)P-labelled brain supernatant fraction although a greater percentage was again exchanged by the mitochondrial fraction.  相似文献   

6.
Phospholipase C (PLC)-mediated degradation of polyphosphoinositides (phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP] was found to be present in rat heart ventricular soluble and total membrane fractions (100,000g supernatant and pellet). Distribution of polyphosphoinositide-specific phospholipase C activity between the membrane and soluble fraction was approximately 63 and 33% of total activity, respectively, whereas, phosphatidylinositol (PI) degradation could be detected only in the soluble fraction. Optimal PIP2-PLC activity occurred at a pCa2+ of 4.5. A similar peak in PIP-PLC activity could be demonstrated in soluble and membrane preparations; however, the rate of PIP degradation in the soluble fraction continued to increase at the highest calcium level tested (pCa2+ 3). With the exception of Sr2+, other noncalcium polycations did not support homogenate PIP2-PLC activity. In the presence of Ca2+, addition of Mg2+, La3+, or Sr2+ (10(-3) M) inhibited PIP2-PLC while Mn2+ and Gd3+ stimulated activity. In both the total membrane and soluble fractions, maximal polyphosphoinositide degradation occurs at pH 5.5 and 6.8. The detergents deoxycholate, cholate, and saponin exert a biphasic effect on PIP2-PLC activity (stimulating at lower concentrations and inhibiting at higher concentrations). The deoxycholate effect is observed in both the cytosolic and membrane fractions. Neutral and cationic detergents inhibit PIP2-PLC activity in a concentration-dependent manner. Similar to cytosolic PI-PLC activity, PIP2-PLC appears to depend on intact sulfhydryl groups. In the presence of a mixture of all three inositol phospholipids or the three phosphoinositides plus noninositol phospholipids, polyphosphoinositides are preferentially degraded.  相似文献   

7.
The incorporation of [(32)P]P(i) into phosphatidylinositol by rat fat-cells was markedly increased in the presence of adrenaline. Phosphatidic acid labelling was also increased, but to a lesser extent. These effects are due to alpha(1)-adrenergic stimulation since they were unaffected by propranolol, blocked by alpha-blockers in the potency order prazosin相似文献   

8.
1. The distribution of individual phospholipids was determined in hen brain and compared with that in sciatic nerve obtained in a previous investigation. Sciatic nerve is more enriched in the myelinic phospholipids ethanolamine plasmalogen, phosphatidylserine and sphingomyelin, but it contains relatively less triphosphoinositide, and much less diphosphoinositide, than the brain. 2. The course of incorporation of intraperitoneally injected (32)P into the acid-soluble phosphorus, phosphoinositides and total phospholipids of hen brain and sciatic nerve was followed. Although the maximum specific radioactivity in sciatic nerve of acid-soluble phosphorus is 4.5 times, and that of triphosphoinositide six times, that in the brain, the relative rate of triphosphoinositide phosphorus synthesis per gram of brain is three times that in sciatic nerve. 3. Administration of the demyelinating agent tri-o-cresyl phosphate to hens has no significant effect on the amounts or the rate of (32)P incorporation into the total phospholipids of the sciatic nerve. However, the rate of incorporation of (32)P into triphosphoinositide, although not its concentration, is raised from the first day after administration of the drug and remains thus 13 and 23 days later. 4. The incorporation of (32)P into polyphosphoinositides of hen brain slices in vitro was studied. The recovery of triphosphoinositide from the slices is markedly increased in the presence of EDTA, although the rate of incorporation of (32)P is unaffected. The incorporation of (32)P is dependent on the presence of Mg(2+) and Ca(2+) in the medium, and is decreased when Na(+) is replaced with K(+) or cholinium ions.  相似文献   

9.
G Y Sun  T N Lin 《Life sciences》1989,44(10):689-696
An improved two-dimensional HPTLC procedure was developed for separating phospholipids including individual phosphoinositides, phosphatidic acids and plasmalogens. This procedure was used to examine the time course for uptake of label by phospholipids in brain subcellular membranes after intracerebral injection of [gamma-32P]-ATP. There were considerable differences in the phospholipid labeling pattern among different subcellular fractions. In particular, a high proportion of labeled phosphatidylinositol 4,5-bisphosphates and phosphatidic acids was found in the myelin fraction during the initial 4 hr after injection. In other subcellular fractions, labeling of phosphoinositides was maximum at 2 hr, but with prolonged time, poly-phosphoinositides started to show a decline in radioactivity whereas labeling of other phospholipids continued to show a steady increase instead. Results indicate at least two different modes for the uptake of label by brain membrane phospholipids after intracerebral injection of [32P]-ATP.  相似文献   

10.
1. Polyphosphoinositide content and phosphorylation of lipids and proteins were analyzed in oocytes of the toad Bufo arenarum Hensel. 2. Plasma membrane-enriched fractions obtained from full-grown, prophase-arrested oocytes incorporated 32P into both phospholipids and proteins after incubation with [gamma-32P]ATP in an Mg(2+)-containing medium. Phosphatidylinositol 4-phosphate (PIP), phosphatidate (PA) and phosphatidylinositol-4,5-bisphosphate (PIP2) were the only labelled lipids. The 32P incorporation depended on incubation time, the amount of protein, and the ATP concentration. 3. Autoradiography of polyacrylamide gel electropherograms and scintillation counting showed that the radioactivity was mainly associated with a group of membrane proteins having an M(r) of 87,000. 4. This paper provides evidence for the capacity of prophase-arrested oocytes from Bufo arenarum to synthesize polyphosphoinositides and to phosphorylate distinct membrane proteins.  相似文献   

11.
1. Inorganic [(32)P]phosphate, [U-(14)C]glycerol and [2-(14)C]ethanolamine were injected into the lateral ventricles in the brains of adult rats, and the labelling of individual phospholipids was followed over 2-4 months in both a microsomal and a highly purified myelin fraction. 2. All the phospholipids in myelin became appreciably labelled, although initially the specific radioactivities of the microsomal phospholipids were somewhat higher. Eventually the specific radioactivities in microsomal and myelin phospholipids fell rapidly at a rate corresponding to the decline of radioactivity in the acid-soluble pools. 3. Equivalent experiments carried out in developing rats with [(32)P]phosphate administered at the start of myelination showed some persistence of phospholipid labelling in the myelin, but this could partly be attributed to the greater retention of (32)P in the acid-soluble phosphorus pool and recycling. 4. It is concluded that a substantial part of the phospholipid molecules in adult myelin membranes is readily exchangeable, although a small pool of slowly exchangeable material also exists. 5. A slow incorporation into or loss of labelled precursor from myelin phospholipids does not necessarily give a good indication of the rate of renewal of the molecules in the membrane. As presumably such labelled molecules originate by exchange with those in another membrane site (not necessarily where synthesis occurs) it is only possible to calculate the turnover rate in the myelin membrane if the behaviour of the specific radioactivity with time of the phospholipid molecules in the immediate precursor pool is known.  相似文献   

12.
Brain slices obtained from the forebrains of adult female rats were incubated with [32P]phosphate and [3H]glycerol for 60 min, and lipids extracted and analyzed by TLC. The 32P in brain slice lipids was primarily in polyphosphoinositides, phosphatidylinositol (PI), and phosphatidate (PA). Distribution of the 32P-labeled lipids in isolated myelin was biased toward PA, 38%, relative to 16% in whole tissue slice lipids. About 33% of the total labeled PA in brain slices was accounted for by that in myelin. On a per milligram protein basis, PA labeling in myelin is about 2.5-fold greater than that of whole brain slice. Since incorporation of [3H]glycerol (indicative of synthesis by the de novo synthetic pathway) was at very low levels, we conclude that [32P]phosphate entered into myelin PA primarily through a pathway involving phospholipase C activity. Much of the production of PA relates to hydrolysis of phosphoinositides, yielding diacylglycerol which is then phosphorylated within myelin. The distribution of label among the inositol-containing lipids suggests that only a fraction of the myelin polyphosphoinositides serve as substrate for rapid diglyceride production. In the presence of 10 mM acetylcholine (ACh) there was a 20-60% stimulation of [32P]phosphate incorporation into PA and PI of brain slice lipids and purified myelin. Stimulation by ACh was blocked by atropine. The observed increase in the 32P/3H ratio, relative to controls, indicated that for both total lipids and myelin lipids there was selective stimulation of a phospholipase C-dependent cycle relative to de novo biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. An activator of the (Ca2+ plus Mg2+)-stimulated ATPase present in the human erythrocytes (membrane) has been isolated in soluble form from hemolysates of these cells. Partial purification has been achieved through use of carboxymethyl-Sephadex chromatography. The resulting activator fraction contained no hemoglobin and only 0.3% of the total adenylate kinase activity of the cell. 2. Whereas the activator was released from erythrocytes subjected to hemolysis in 20 miosM buffer at pH 7.6 or at pH 5.8, only the membranes prepared at pH 7.6 were affected by it. 2. Whereas the activator was released from erythrocytes subjected to hemolysis in 20 miosM buffer at pH 7.6 or at pH 5.8, only the membranes prepared at pH 7.6 were affected by it. 3. When (Ca2+ plus Mg2+)-ATPase activity was measured by 32Pi release from (gamma-32P)ATP, freeze-thawed erythrocytes, as well as membranes prepared at pH 5.8 and at pH 7.6, expressed lower values than noted by assay for total Pi release. When ADP instead of ATP was used as substrate, significant amount of Pi were released by these erythrocyte preparations. Further study revealed (a) production of ATP and AMP from ADP with membranes and hemolysate alone, and (b) exchange of the gamma-and B-position phosphate on (gama-32P)ATP in the presence of membranes plus hemolysates. These observations established the presence of adenylate kinase activity in the (membrane-free) hemolysates and in membranes. It further supports the conclusion that Pi release from ADP by human erythrocytes (freeze-thawed) and by their isolated membranes is due to formation of ATP by adenylate kinase and hydrolysis of this generated ATP by (Ca2+ plus Mg2+)-ATPase. 4. The following points were also established: (a) absence of an ADPase in human erythrocytes; (b) the (Ca2+ plus Mg2+)-ATPase activator enhanced cleavage only of the gama-position of ATP and (c) the (Ca2+ plus Mg2+)-ATPase activator is neither adenylate kinase nor hemoglobin.  相似文献   

14.
Basis for Phospholipid Incorporation into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: To characterize the mechanism(s) for targeting of phospholipids to peripheral nerve myelin, we examined the kinetics of incorporation of tritiated choline-, glycerol-, and ethanolamine-labeled phospholipids into four subfractions: microsomes, mitochondria, myelin-like material, and purified myelin at 1, 6, and 24 h after precursors were injected into sciatic nerves of 23–24-day-old rats. As validation of the fractionation scheme, a lag (> 1 h) in the accumulation of labeled phospholipids in the myelin-containing subfractions was found. This lag signifies the time between synthesis on organelles in Schwann cell cytoplasm and transport to myelin. In the present study, we find that sphingomyelin (choline-labeled) accumulated in myelin-rich subfractions only at 6 and 24 h, whereas phosphatidylserine (glycerol-labeled) and plasmalogen (ethanolamine-labeled) accumulated in the myelin-rich fractions by 1 h. The later phospholipids accumulate preferentially in the myelin-like fraction. These results are consistent with the notion that the targeting of sphingomyelin, a lipid present in the outer myelin leaflet, is different from the targeting of phosphatidylserine and ethanolamine plasmalogen, lipids in the inner leaflet. These findings are discussed in light of the possibility that sphingomyelin targeting is Golgi apparatus based, whereas phosphatidylserine and ethanolamine plasmalogen use a more direct transport system. Furthermore, the routes of phospholipid targeting mimic routes taken by myelin proteins P0 (Golgi) and myelin basic proteins (more direct).  相似文献   

15.
Polyphosphoinositides in normal and neoplastic rodent astrocytes   总被引:3,自引:0,他引:3  
Polyphosphoinositides were identified in dispersed cell cultures of normal newborn hamster astrocytes and of a chemically transformed adult rat astrocytoma (C6) and are therefore presumed to be constituents of immature astrocytes in brain. Small amounts were also detected in astrocytomas grown as subcutaneous tumors. These lipids were metabolically highly active, accounting for a substantial fraction of 32Pi incorporated into phospholipids. Astrocytes may thus contain a small pool of polyphosphoinositides metabolically distinct from that in myelin.  相似文献   

16.
Abstract: At intervals ranging from 1 to 10 min after injection of 32Pi into rat brain, myelin was prepared and separated into three subfractions: heavy, medium, and light. The radioactivity of total phospholipids and polyphospho-inositides (PPI) was then determined. There was rapid incorporation of 32Pi into PPI, which contained 50–70% of the radioactivity among total brain lipids and more than 70% among myelin lipids. The myelin fraction had incorporated 32Pi into total recovered PPI in the order of medium > heavy > light fraction: however, the order of relative specific radioactivities was heavy > light > medium. Labeling of the PPI precursors, phosphatidic acid (PA) and phos-phatidylinositol (PI), was considerably lower in the purified myelin than in total brain. The di- (DPI) and triphosphoinositides (TPI) in heavy myelin exchanged 32Pi at rates 2 to 3 times faster than those in medium and light myelin. DPI of all subfractions of myelin exchanged much faster than TPI. The results show that the most active phosphate turnover of myelin PPI occurs in the heavy myelin fraction (probably largely consisting of myelin appurtenant regions). However, medium and light myelin (most probably representing the closely packed layers of myelin sheaths) also showed rapid turnover of PPI.  相似文献   

17.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

18.
Functional heterogeneity of polyphosphoinositides in human erythrocytes.   总被引:1,自引:0,他引:1  
After labelling of erythrocytes with [32P]P1 for 23 h, the specific radioactivities of the phosphomonoester groups of PtdIns4P and of PtdIns(4,5)P2 approached equilibrium values which were close to that of the gamma-phosphate of ATP (78-85%), showing that almost all of these phosphate groups were metabolically active. Phosphoinositidase C (PIC) activation, using Ca2+ and the ionophore A23187, of 32P-prelabelled erythrocytes was used to investigate a possible functional heterogeneity of the phosphoinositides. Hydrolysis of PtdIns(4,5)P2, measured from its radioactivity, decreased as function of the time of prelabelling up to a constant value equal to that measured from its content. In contrast, hydrolysis of PtdIns4P, determined both from radioactivity and from content, was always the same. These data suggest that newly labelled molecules of PtdIns(4,5)P2, initially accessible to PIC, then moved towards a PIC-resistant pool. This was further confirmed by measuring the fraction of labelled PtdIns(4,5)P2 molecules accessible to PIC after a prelabelling period of 5 min and different times of reincubation. Hydrolysis by PIC was also measured in erythrocytes in which the phosphoinositide content had been modified by activation (Mg2+-enriched cells) or inhibition (ATP-depleted cells) of the phosphoinositide kinases. The sizes of the PIC-resistant pools of polyphosphoinositides were not affected by these treatments, indicating that the kinases (and the phosphatases) act on the PIC-sensitive pools. This was also shown by the decrease in the production of Ins(1,4,5)P3 upon PIC activation in ATP-depleted erythrocytes. A model is presented in which the PIC-sensitive pools of polyphosphoinositides are those which are accessible to the kinases and the phosphatases and are rapidly turned over.  相似文献   

19.
Ionophore A23187, either in the presence or absence of added Ca2+ or Mg2+, caused a marked accumulation of [32P]-phosphatidic acid in pancreatic islets pre-labelled with 32 Pi. A similar effect was observed following the addition of 4 mM Ba2+ ions in the absence of added Ca2+. Neither agent caused a significant modification of labelling in other lipid fractions, although there was a persistent trend towards reduced labelling of phosphatidylcholine and phosphatidylethanolamine. Ionophore A23187 also potentiated the incorporation of 3H-glycerol into phosphatidic acid and reduced the incorporation of this precursor into phosphatidylcholine. In islets pre-labelled with 3H-glycerol and subsequently exposed to A23187 or Ba2+, no significant changes were observed in label associated with either phospholipids or neutral glycerolipids. These results suggest that ionophore A23187 and Ba2+ ions can divert the synthesis of phospholipids resulting in increased formation of phosphatidic acid at the expense of non-acidic phospholipids, principally phosphatidylcholine. We tentatively suggest that this effect may be the result of inhibition by Ca2+ of the breakdown of phosphatidic acid to diglyceride, an enzymic step which may regulate the relative amounts of acidic and neutral phospholipids.  相似文献   

20.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing agent in invertebrate eggs that has recently been shown to be active in certain mammalian and plant systems. Little, however, is known concerning the properties of putative NAADP receptors. Here, for the first time, we report binding sites for NAADP in brain. In contrast to sea urchin egg homogenates, [(32)P]NAADP bound reversibly to multiple sites in brain membranes. The rank order of potency of NAADP, 2',3'-cyclic NAADP and 3'-NAADP in displacing [(32)P]NAADP was, however, the same in the two systems and in agreement with their ability to mobilize Ca(2+) from homogenates. These data indicate that [(32)P]NAADP likely binds to receptors mediating Ca(2+) mobilization. Autoradiography revealed striking heterogeneity in the distribution of [(32)P]NAADP binding sites throughout the brain. Our data strongly support a role for NAADP-induced Ca(2+) signaling in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号