首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In genetic analysis of diseases in which the underlying model is unknown, "model free" methods-such as affected sib pair (ASP) tests-are often preferred over LOD-score methods, although LOD-score methods under the correct or even approximately correct model are more powerful than ASP tests. However, there might be circumstances in which nonparametric methods will outperform LOD-score methods. Recently, Dizier et al. reported that, in some complex two-locus (2L) models, LOD-score methods with segregation analysis-derived parameters had less power to detect linkage than ASP tests. We investigated whether these particular models, in fact, represent a situation that ASP tests are more powerful than LOD scores. We simulated data according to the parameters specified by Dizier et al. and analyzed the data by using a (a) single locus (SL) LOD-score analysis performed twice, under a simple dominant and a recessive mode of inheritance (MOI), (b) ASP methods, and (c) nonparametric linkage (NPL) analysis. We show that SL analysis performed twice and corrected for the type I-error increase due to multiple testing yields almost as much linkage information as does an analysis under the correct 2L model and is more powerful than either the ASP method or the NPL method. We demonstrate that, even for complex genetic models, the most important condition for linkage analysis is that the assumed MOI at the disease locus being tested is approximately correct, not that the inheritance of the disease per se is correctly specified. In the analysis by Dizier et al., segregation analysis led to estimates of dominance parameters that were grossly misspecified for the locus tested in those models in which ASP tests appeared to be more powerful than LOD-score analyses.  相似文献   

2.
In complex disease studies, it is crucial to perform multipoint linkage analysis with many markers and to use robust nonparametric methods that take account of all pedigree information. Currently available methods fall short in both regards. In this paper, we describe how to extract complete multipoint inheritance information from general pedigrees of moderate size. This information is captured in the multipoint inheritance distribution, which provides a framework for a unified approach to both parametric and nonparametric methods of linkage analysis. Specifically, the approach includes the following: (1) Rapid exact computation of multipoint LOD scores involving dozens of highly polymorphic markers, even in the presence of loops and missing data. (2) Non-parametric linkage (NPL) analysis, a powerful new approach to pedigree analysis. We show that NPL is robust to uncertainty about mode of inheritance, is much more powerful than commonly used nonparametric methods, and loses little power relative to parametric linkage analysis. NPL thus appears to be the method of choice for pedigree studies of complex traits. (3) Information-content mapping, which measures the fraction of the total inheritance information extracted by the available marker data and points out the regions in which typing additional markers is most useful. (4) Maximum-likelihood reconstruction of many-marker haplotypes, even in pedigrees with missing data. We have implemented NPL analysis, LOD-score computation, information-content mapping, and haplotype reconstruction in a new computer package, GENEHUNTER. The package allows efficient multipoint analysis of pedigree data to be performed rapidly in a single user-friendly environment.  相似文献   

3.
The autoimmune thyroid diseases (AITDs) include two related disorders, Graves disease (GD) and Hashimoto thyroiditis, in which perturbations of immune regulation result in an immune attack on the thyroid gland. The AITDs are multifactorial and develop in genetically susceptible individuals. However, the genes responsible for this susceptibility remain unknown. Recently, we initiated a whole-genome linkage study of patients with AITD, in order to identify their susceptibility genes. We studied a data set of 53 multiplex, multigenerational AITD families (323 individuals), using highly polymorphic and densely spaced microsatellite markers (intermarker distance <10 cM). Linkage analysis was performed by use of two-point and multipoint parametric methods (classic LOD-score analysis). While studying chromosome 20, we found a locus on chromosome 20q11.2 that was strongly linked to GD. A maximum two-point LOD score of 3.2 was obtained at marker D20S195, assuming a recessive mode of inheritance and a penetrance of.3. The maximum nonparametric LOD score was 2.4 (P=.00043); this score also was obtained at marker D20S195. Multipoint linkage analysis yielded a maximum LOD score of 3.5 for a 6-cM interval between markers D20S195 and D20S107. There was no evidence for heterogeneity in our sample. In our view, these results indicate strong evidence for linkage and suggest the presence of a major GD-susceptibility gene on chromosome 20q11.2.  相似文献   

4.
ABSTRACT: BACKGROUND: In the last years GWA studies have successfully identified common SNPs associated with complex diseases. However, most of the variants found this way account for only a small portion of the trait variance. This fact leads researchers to focus on rare-variant mapping with large scale sequencing, which can be facilitated by using linkage information. The question arises why linkage analysis often fails to identify genes when analyzing complex diseases. Using simulations we have investigated the power of parametric and nonparametric linkage statistics (KC-LOD, NPL, LOD and MOD scores), to detect the effect of genes responsible for complex diseases using different pedigree structures. RESULTS: As expected, a small number of pedigrees with less than three affected individuals has low power to map disease genes with modest effect. Interestingly, the power decreases when unaffected individuals are included in the analysis, irrespective of the true mode of inheritance. Furthermore, we found that the best performing statistic depends not only on the type of pedigrees but also on the true mode of inheritance. CONCLUSIONS: When applied in a sensible way linkage is an appropriate and robust technique to map genes for complex disease. Unlike association analysis, linkage analysis is not hampered by allelic heterogeneity. So, why does linkage analysis often fail with complex diseases? Evidently, when using an insufficient number of small pedigrees, one might miss a true genetic linkage when actually a real effect exists. Furthermore, we show that the test statistic has an important effect on the power to detect linkage as well. Therefore, a linkage analysis might fail if an inadequate test statistic is employed. We provide recommendations regarding the most favorable test statistics, in terms of power, for a given mode of inheritance and type of pedigrees under study, in order to reduce the probability to miss a true linkage.  相似文献   

5.
We present two extensions to linkage analysis for genetically complex traits. The first extension allows investigators to perform parametric (LOD-score) analysis of traits caused by imprinted genes-that is, of traits showing a parent-of-origin effect. By specification of two heterozygote penetrance parameters, paternal and maternal origin of the mutation can be treated differently in terms of probability of expression of the trait. Therefore, a single-disease-locus-imprinting model includes four penetrances instead of only three. In the second extension, parametric and nonparametric linkage analysis with two trait loci is formulated for a multimarker setting, optionally taking imprinting into account. We have implemented both methods into the program GENEHUNTER. The new tools, GENEHUNTER-IMPRINTING and GENEHUNTER-TWOLOCUS, were applied to human family data for sensitization to mite allergens. The data set comprises pedigrees from England, Germany, Italy, and Portugal. With single-disease-locus-imprinting MOD-score analysis, we find several regions that show at least suggestive evidence for linkage. Most prominently, a maximum LOD score of 4.76 is obtained near D8S511, for the English population, when a model that implies complete maternal imprinting is used. Parametric two-trait-locus analysis yields a maximum LOD score of 6.09 for the German population, occurring exactly at D4S430 and D18S452. The heterogeneity model specified for analysis alludes to complete maternal imprinting at both disease loci. Altogether, our results suggest that the two novel formulations of linkage analysis provide valuable tools for genetic mapping of multifactorial traits.  相似文献   

6.
Both systemic lupus erythematosus (SLE) and vitiligo are autoimmune disorders that have strong evidence of complex genetic contributions to their etiology, but, to date, efforts using genetic linkage to find the susceptibility genes for either phenotype have met with limited success. Since autoimmune diseases are thought to share at least some of their genetic origins, and since only a small minority (16 of 92) of the European-American pedigrees multiplex for SLE in our collection have one or more affected members with vitiligo, we hypothesized that these pedigrees might be more genetically homogeneous at loci important to both SLE and vitiligo and, hence, have increased power for detection of linkage. We therefore evaluated genomewide microsatellite-marker-scan data for markers at an average marker density of approximately 11 cM in these 16 European-American pedigrees and identified a significant linkage at 17p13, where the maximum multipoint parametric LOD score was 3.64 (P<4.3x10(-5)) and the nonparametric linkage score was 4.02 (P<2.8x10(-5)), respectively. The segregation behavior of this linkage suggests a recessive mode of inheritance with a virtually homogeneous genetic effect in these 16 pedigrees. These results support the hypotheses that SLE and vitiligo may share important genetic effects and that sampling on the basis of clinical covariates dramatically improves power to identify genetic effects.  相似文献   

7.
Strauch K 《Human heredity》2007,64(3):192-202
A MOD-score analysis, in which the parametric LOD score is maximized with respect to the trait-model parameters, can be a powerful method for the mapping of complex traits. With affected sib pairs, it has been shown before that MOD scores asymptotically follow a mixture of chi(2) distributions with 2, 1 and 0 degrees of freedom under the null hypothesis of no linkage. In that context, a MOD-score analysis yields some (albeit limited) information regarding the trait-model parameters, and there is a chance for an increased power compared to a simple LOD-score analysis. Here, it is shown that with unilineal affected relative pairs, MOD scores asymptotically follow a mixture of chi(2) distributions with 1 and 0 degrees of freedom under the null hypothesis, that is, the same distribution as followed by simple LOD scores. No information regarding the trait model can be obtained in this setting, and no power is gained when compared to a LOD-score analysis. An outlook to larger pedigrees is given. The number of degrees of freedom underlying the null distribution of MOD scores, that depends on the type of pedigrees studied, corresponds to the number of explored dimensions related to power and to the number of parameters that can jointly be estimated.  相似文献   

8.
One hundred fifty-two families with prostate cancer were analyzed for linkage to markers spanning a 20-cM region of 1q42.2-43, the location of a putative prostate cancer-susceptibility locus (PCAP). No significant evidence for linkage was found, by use of both parametric and nonparametric tests, in our total data set, which included 522 genotyped affected men. Rejection of linkage may reflect locus heterogeneity or the confounding effects of sporadic disease in older-onset cases; therefore, pedigrees were stratified into homogeneous subsets based on mean age at diagnosis of prostate cancer and number of affected men. Analyses of these subsets also detected no significant evidence for linkage, although LOD scores were positive at higher recombination fractions, which is consistent with the presence of a small proportion of families with linkage. The most suggestive evidence of linkage was in families with at least five affected men (nonparametric linkage score of 1.2; P=.1). If heterogeneity is assumed, an estimated 4%-9% of these 152 families may show linkage in this region. We conclude that the putative PCAP locus does not account for a large proportion of these families with prostate cancer, although the linkage of a small subset is compatible with these data.  相似文献   

9.
Seizures and psychosis are neuropsychiatric (NP) manifestations of a large number of systemic lupus erythematosus (SLE) patients. Since NP manifestations were part of the SLE phenotype for some, but not all SLE affecteds, we hypothesized that those SLE patient families with NP manifestations might be more genetically homogeneous at loci important to NP-related SLE, and hence have increased power to detect linkage. We identified 23 families of European-American (EA) origin and 20 families of African-American (AA) origin, in which at least one SLE patient in each family was diagnosed with the presence of NP manifestations. A total of 318 microsatellite markers at an average marker density of 11 cM were genotyped. Uncertainty of the genetic model led us to perform the initial genome scan by a multipoint non-parametric allele sharing linkage method. Once the evidence of linkage was suggestive, we then performed parametric model-based linkage by maximizing the relevant parameters to define a parsimonious genetic model. We found the maximum multipoint parametric LOD score was 5.19 and the non-parametric linkage score (Zlr) was 3.12 ( P=9x10(-4)) for EA NP pedigrees at 4p16, previously identified as SLEB3. The segregation behavior of this linked locus suggests a dominant mode of inheritance with an almost 100% homogeneous genetic effect in these pedigrees. The results demonstrated a significant increase of LOD score to detect SLEB3 when the families were further ascertained through NP, compared with the analysis of all EA SLE families together.  相似文献   

10.
Bipolar affective disorder (BP) is a major neuropsychiatric disorder with high heritability and complex inheritance. Previously reported linkage between BP and DNA markers in the pericentromeric region of chromosome 18, with a parent-of-origin effect (linkage was present in pedigrees with paternal transmission and absent in pedigrees with exclusive maternal inheritance), has been a focus of interest in human genetics. We reexamined the evidence in one of the largest samples reported to date (1,013 genotyped individuals in 53 unilineal multiplex pedigrees), using 10 highly polymorphic markers and a range of parametric and nonparametric analyses. There was no evidence for significant linkage between BP and chromosome 18 pericentromeric markers in the sample as a whole, nor was there evidence for significant parent-of-origin effect (pedigrees with paternal transmission were not differentially linked to the implicated chromosomal region). Two-point LOD scores and single-locus sib-pair results gave some support for suggestive linkage, but this was not substantiated by multilocus analysis, and the results were further tempered by multiple test effects. We conclude that there is no compelling evidence for linkage between BP and chromosome 18 pericentromeric markers in this sample.  相似文献   

11.
Linkage of a putative prostate cancer-susceptibility locus (HPC1) to chromosome 1q24-25 has recently been reported. Confirmation of this linkage in independent data sets is essential because of the complex nature of this disease. Here we report the results of a linkage analysis using 10 polymorphic markers spanning approximately 37 cM in the region of the putative HPC1 locus in 49 high-risk prostate cancer families. Data were analyzed by use of two parametric models and a nonparametric method. For the parametric LOD-score method, the first model was identical to the original report by Smith and coworkers ("Hopkins"), and the second was based on a segregation analysis previously reported by Carter and coworkers ("Seattle"). In both cases, our results do not confirm the linkage reported for this region. Calculated LOD scores from the two-point analysis for each marker were highly negative at small recombination fractions. Multipoint LOD scores for this linkage group were also highly negative. Additionally, we were unable to demonstrate heterogeneity within the data set, using HOMOG. Although these data do not formally exclude linkage of a prostate cancer-susceptibility locus at HPC1, it is likely that other prostate cancer-susceptibility loci play a more critical role in the families that we studied.  相似文献   

12.
Usually, when complex traits are at issue, not only are the loci of the responsible genes a priori unknown; the same also holds for the mode of inheritance of the trait, and sometimes even for the phenotype definition. The term mode of inheritance relates to both the genetic mechanism, i.e., the number of loci implicated in the etiology of the disease, and the genotype-phenotype relation, which describes the influence of these loci on the trait. Having an idea of the genetic model can crucially facilitate the mapping process. This holds especially in the context of linkage analysis, where an appropriate parametric model or a suitable nonparametric allele sharing statistic may accordingly be selected. Here, we review the difficulties with parametric and nonparametric linkage analysis when applied to multifactorial diseases. We address the question why it is necessary to adequately model a genetically complex trait in a linkage study, and elucidate the steps to do so. Furthermore, we discuss the value of including unaffected individuals into the analysis, as well as of looking at larger pedigrees, both with parametric and nonparametric methods. Our considerations and suggestions aim at guiding researchers to genotyping individuals at a trait locus as accurately as possible.  相似文献   

13.
Several methods have been proposed for linkage analysis of complex traits with unknown mode of inheritance. These methods include the LOD score maximized over disease models (MMLS) and the "nonparametric" linkage (NPL) statistic. In previous work, we evaluated the increase of type I error when maximizing over two or more genetic models, and we compared the power of MMLS to detect linkage, in a number of complex modes of inheritance, with analysis assuming the true model. In the present study, we compare MMLS and NPL directly. We simulated 100 data sets with 20 families each, using 26 generating models: (1) 4 intermediate models (penetrance of heterozygote between that of the two homozygotes); (2) 6 two-locus additive models; and (3) 16 two-locus heterogeneity models (admixture alpha = 1.0,.7,.5, and.3; alpha = 1.0 replicates simple Mendelian models). For LOD scores, we assumed dominant and recessive inheritance with 50% penetrance. We took the higher of the two maximum LOD scores and subtracted 0.3 to correct for multiple tests (MMLS-C). We compared expected maximum LOD scores and power, using MMLS-C and NPL as well as the true model. Since NPL uses only the affected family members, we also performed an affecteds-only analysis using MMLS-C. The MMLS-C was both uniformly more powerful than NPL for most cases we examined, except when linkage information was low, and close to the results for the true model under locus heterogeneity. We still found better power for the MMLS-C compared with NPL in affecteds-only analysis. The results show that use of two simple modes of inheritance at a fixed penetrance can have more power than NPL when the trait mode of inheritance is complex and when there is heterogeneity in the data set.  相似文献   

14.
A susceptibility locus for migraine with aura, on chromosome 4q24   总被引:18,自引:0,他引:18  
Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of linkage or association. To date, no genomewide screen for migraine has been published. We report results from a genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational transmission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers, with an average intermarker distance of 11 cM. Significant evidence of linkage was found between the MA phenotype and marker D4S1647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P=.000006) or locus heterogeneity (P=.000011). Multipoint parametric (HLOD = 4.45; P=.0000058) and nonparametric (NPL(all) = 3.43; P=.0007) analyses support linkage in this region. Statistically significant linkage was not observed in any other chromosomal region.  相似文献   

15.
Over the past 20 years, the incidence of cutaneous malignant melanoma (CMM) has increased dramatically worldwide. A positive family history of the disease is among the most established risk factors for CMM; it is estimated that 10% of CMM cases result from an inherited predisposition. Although mutations in two genes, CDKN2A and CDK4, have been shown to confer an increased risk of CMM, they account for only 20%-25% of families with multiple cases of CMM. Therefore, to localize additional loci involved in melanoma susceptibility, we have performed a genomewide scan for linkage in 49 Australian pedigrees containing at least three CMM cases, in which CDKN2A and CDK4 involvement has been excluded. The highest two-point parametric LOD score (1.82; recombination fraction [theta] 0.2) was obtained at D1S2726, which maps to the short arm of chromosome 1 (1p22). A parametric LOD score of 4.65 (theta=0) and a nonparametric LOD score of 4.19 were found at D1S2779 in nine families selected for early age at onset. Additional typing yielded seven adjacent markers with LOD scores >3 in this subset, with the highest parametric LOD score, 4.95 (theta=0) (nonparametric LOD score 5.37), at D1S2776. Analysis of 33 additional multiplex families with CMM from several continents provided further evidence for linkage to the 1p22 region, again strongest in families with the earliest mean age at diagnosis. A nonparametric ordered sequential analysis was used, based on the average age at diagnosis in each family. The highest LOD score, 6.43, was obtained at D1S2779 and occurred when the 15 families with the earliest ages at onset were included. These data provide significant evidence of a novel susceptibility gene for CMM located within chromosome band 1p22.  相似文献   

16.
Restless legs syndrome (RLS) is a common neurological disorder that affects 5%-12% of all whites. To genetically dissect this complex disease, we characterized 15 large and extended multiplex pedigrees, consisting of 453 subjects (134 affected with RLS). A familial aggregation analysis was performed, and SAGE FCOR was used to quantify the total genetic contribution in these families. A weighted average correlation of 0.17 between first-degree relatives was obtained, and heritability was estimated to be 0.60 for all types of relative pairs, indicating that RLS is a highly heritable trait in this ascertained cohort. A genomewide linkage scan, which involved >400 10-cM-spaced markers and spanned the entire human genome, was then performed for 144 individuals in the cohort. Model-free linkage analysis identified one novel significant RLS-susceptibility locus on chromosome 9p24-22 with a multipoint nonparametric linkage (NPL) score of 3.22. Suggestive evidence of linkage was found on chromosome 3q26.31 (NPL score 2.03), chromosome 4q31.21 (NPL score 2.28), chromosome 5p13.3 (NPL score 2.68), and chromosome 6p22.3 (NPL score 2.06). Model-based linkage analysis, with the assumption of an autosomal-dominant mode of inheritance, validated the 9p24-22 linkage to RLS in two families (two-point LOD score of 3.77; multipoint LOD score of 3.91). Further fine mapping confirmed the linkage result and defined this novel RLS disease locus to a critical interval. This study establishes RLS as a highly heritable trait, identifies a novel genetic locus for RLS, and will facilitate further cloning and identification of the genes for RLS.  相似文献   

17.
Preeclampsia (PE) and eclampsia (E) are potentially life-threatening conditions that can occur during human pregnancy. Generally considered to be different degrees of severity of the same disease process, the PE/E syndrome is thought to be predominantly genetic in origin, although its exact etiology and genetics are not fully understood. Here we report results of a genomewide linkage search for the gene(s) responsible for susceptibility to PE/E, using 15 informative pedigrees and 90 polymorphic DNA markers from all autosomes. Because of uncertainties concerning inheritance and diagnosis, four different models that assume maternal gene expression have been used to carry out LOD-score analysis. The region between D4S450 and D4S610 (2.8 cM) on the long arm of chromosome 4 was identified as a strong candidate region for a PE/E-susceptibility locus. The maximum multipoint LOD score within this interval was 2.9. Analysis of markers in the region around D4S450 and D4S610 by the affected-pedigree-member method also supported the possibility of a susceptibility locus in this region. However, to verify or exclude definitively linkage to this region, other groups of PE/E pedigrees will be required.  相似文献   

18.
Localization of the gene for classic Alport syndrome   总被引:11,自引:0,他引:11  
F A Flinter  S Abbs  M Bobrow 《Genomics》1989,4(3):335-338
The inheritance of Alport syndrome has been controversial for 30 years because no clear diagnostic criteria were established to define a clinically homogeneous group of patients. In this study, 41 families with "classic" Alport syndrome were identified and studied. All the pedigrees are compatible with X-linked inheritance. A formal genetic study confirmed linkage to probe S21 (DXS17), with a maximum LOD score of 4.72 at a recombination frequency of 0.06.  相似文献   

19.
OBJECTIVES: Linkage disequilibrium (LD) between closely spaced SNPs can be accommodated in linkage analysis by specifying the multi-SNP haplotype frequencies, if known. Phased haplotypes in candidate regions can provide gold standard haplotype frequency estimates, and may be of inherent interest as markers. We evaluated the effects of different methods of haplotype frequency estimation, and the use of marker phase information, on linkage analysis of a multi-SNP cluster in a candidate region for Alzheimer's disease (AD). METHODS: We performed parametric linkage analysis of a five-SNP cluster in extended pedigrees to compare the use of: (1) haplotype frequencies estimated by molecular phase determination, maximum likelihood estimation, or by assuming linkage equilibrium (LE); (2) AD families or controls as the frequency source; and (3) unphased or molecularly phased SNP data. RESULTS: There was moderate to strong pairwise LD among the five SNPs. Falsely assuming LE substantially inflated the LOD score, but the method of haplotype frequency estimation and particular sample used made little difference provided that LD was accommodated. Use of phased haplotypes produced a modest increase in the LOD score over unphased SNPs. CONCLUSIONS: Ignoring LD between markers can lead to substantially inflated evidence for linkage in LOD score analysis of extended pedigrees with missing data. Use of marker phase information in linkage analysis may be important in disease studies where the costs of family recruitment and phenotyping greatly exceed the costs of phase determination.  相似文献   

20.
Palauans are an isolated population in Micronesia with lifetime prevalence of schizophrenia (SCZD) of 2%, compared to the world rate of approximately 1%. The possible enrichment for SCZD genes, in conjunction with the potential for reduced etiological heterogeneity and the opportunity to ascertain statistically powerful extended pedigrees, makes Palauans a population of choice for the mapping of SCZD genes. We have used a Markov-chain Monte Carlo method to perform a genomewide multipoint analysis in seven extended pedigrees from Palau. Robust multipoint parametric and nonparametric linkage (NPL) analyses were performed under three nested diagnostic classifications-core, spectrum, and broad. We observed four regions of interest across the genome. Two of these regions-on chromosomes 2p13-14 (for which, under core diagnostic classification, NPL=6.5 and parametric LOD=4.8) and 13q12-22 (for which, under broad diagnostic classification, parametric LOD=3.6, and, under spectrum diagnostic classification, parametric LOD=3.5)-had evidence for linkage with genomewide significance, after correction for multiple testing; with the current pedigree resource and genotyping, these regions are estimated to be 4.3 cM and 19.75 cM in size, respectively. A third region, with intermediate evidence for linkage, was identified on chromosome 5q22-qter (for which, under broad diagnostic classification, parametric LOD=2.5). The fourth region of interest had only borderline suggestive evidence for linkage (on 3q24-28; for this region, under broad diagnostic classification, parametric LOD=2.0). All regions exhibited evidence for genetic heterogeneity. Our findings provide significant evidence for susceptibility loci on chromosomes 2p13-14 and 13q12-22 and support both a model of genetic heterogeneity and the utility of a broader set of diagnostic classifications in the population from Palau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号