首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
生长素合成途径的研究进展   总被引:5,自引:0,他引:5  
生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素, 参与植物生长发育的许多过程。植物和一些侵染植物的病原微生物都可以通过改变生长素的合成来调节植株的生长。吲哚-3-乙酸(IAA)是天然植物生长素的主要活性成分。近年来, 随着IAA生物合成过程中一些关键调控基因的克隆和功能分析, 人们对IAA的生物合成途径有了更加深入的认识。IAA的生物合成有依赖色氨酸和非依赖色氨酸两条途径。依据IAA合成的中间产物不同, 依赖色氨酸的生物合成过程通常又划分成4条支路: 吲哚乙醛肟途径、吲哚丙酮酸途径、色胺途径和吲哚乙酰胺途径。该文综述了近几年在IAA生物合成方面取得的新进展。  相似文献   

2.
中药大青叶是菘蓝的干燥叶片,主要活性物质为吲哚类化合物,包括靛蓝、靛玉红、色胺酮等,以上吲哚类化合物的生物合成起始于色氨酸途径,目前在植物中的合成机制还未完全阐明.本研究以成熟菘蓝叶片为研究对象,对茉莉酸甲酯诱导的叶片进行了转录组分析,对已知途径进行了转录组注释,并对未解析途径进行了预测分析.分别获得了色氨酸代谢途径中色氨酸、吲哚乙酸、吲哚苷和萜类吲哚生物碱合成几个代谢支路中16个催化步骤的38个编码基因.通过共表达网络分析,预测转录因子bHLH125可能对吲哚途径具有核心调控作用;CYP2A6-1和CYP735A2等蛋白可能催化生成靛蓝、靛玉红、色胺酮前体的羟基化反应,对这两个蛋白与底物分子的结合进行分子对接建模,均显示对吲哚分子具有较好的结合力.本研究为后续开展菘蓝代谢调控和育种,以及开展吲哚类物质合成生物学研究提供候选基因.  相似文献   

3.
【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。  相似文献   

4.
黑芥子酶研究进展   总被引:3,自引:0,他引:3  
杨文杰 《生物学通报》1999,34(11):18-19
黑芥子酶又称黑芥子硫苷酸酶,广泛存在于自然界。它能催化硫代葡萄糖苷水解成为葡萄糖和不稳定的中间物配基,此配基易重排形成异硫氰化合物,硫氰化合物,腈,口恶唑烷硫酮等有毒物质。当植物受到昆虫,哺乳动物或病源伤害时,黑芥子酶与硫代葡萄糖苷混合,释放有毒的水解产物。因此认为黑芥子酶-硫代葡萄糖苷系统是植物重要的防御系统。另一方面,黑芥子酶催化硫代葡萄糖苷所生成的有毒物质,在一定程度上也影响了十字花科油料及蔬菜作物的品质,因此,引起了对黑芥子酶及硫代葡萄糖苷研究的重视。本文仅对黑芥子酶的研究概况作一综述。1 黑芥子酶的…  相似文献   

5.
从嗜高温放线菌Thermobifida fusca中分离得到的苯基丙酮单加氧酶主要催化芳香族化合物的Baeyer-Villiger氧化反应。对该酶的结构和功能进行研究时,发现位于底物结合口袋的Met446位点突变可以赋予突变酶催化C-H键活化的新功能,氧化吲哚合成靛蓝和靛玉红,但产量仅为1.89 mg/L。为了获得合成靛蓝和靛玉红的全细胞催化剂,直接补加吲哚并不能提高细胞合成效率,补加吲哚的前体物质L-色氨酸可以使细胞合成靛蓝和靛玉红的能力提高4.5倍,达到8.43 mg/L。为了进一步提高细胞的生物合成效率,通过代谢工程改造大肠杆菌的糖代谢途径,阻断葡萄糖异构酶基因pgi,使磷酸戊糖途径代替糖酵解途径成为葡萄糖的主要代谢通路,从而为细胞提供更多氧化吲哚所需的辅因子NADPH,导致细胞合成靛蓝和靛玉红的效率进一步提高3倍,达到25 mg/L。通过组合蛋白质工程和代谢工程设计全细胞催化剂不仅可以高效地合成靛蓝和靛玉红,而且设计理念为相关全细胞催化剂的开发提供了一种新的策略。  相似文献   

6.
COI1参与茉莉酸调控拟南芥吲哚族芥子油苷生物合成过程   总被引:2,自引:0,他引:2  
石璐  李梦莎  王丽华  于萍  李楠  国静  阎秀峰 《生态学报》2012,32(17):5438-5444
芥子油苷是一类具有防御作用的植物次生代谢产物,外源激素茉莉酸对吲哚族芥子油苷的合成具有强烈的诱导作用,但茉莉酸调控吲哚族芥子油苷生物合成的分子机制并不清楚。以模式植物拟南芥(Arabidopsis thaliana)的野生型和coi1-22、coi1-23两种突变体为研究材料,通过茉莉酸甲酯(MeJA)处理,比较了拟南芥野生型和coi1突变体植株吲哚族芥子油苷含量、吲哚族芥子油苷合成前体色氨酸的生物合成基因(ASA1、TSA1和TSB1)、吲哚族芥子油苷生物合成基因(CYP79B2、CYP79B3和CYP83B1)及调控基因(MYB34和MYB51)的表达对MeJA的响应差异,由此确定茉莉酸信号通过COI1蛋白调控吲哚族芥子油苷生物合成,即茉莉酸信号通过信号开关COI1蛋白作用于转录因子MYB34和MYB51,进而调控吲哚族芥子油苷合成基因CYP79B2、CYP79B3、CYP83B1和前体色氨酸的合成基因ASA1、TSA1、TSB1。并且推断,COI1功能缺失后,茉莉酸信号可能通过其他未知调控因子或调控途径激活MYB34转录因子从而调控下游基因表达。  相似文献   

7.
植物体内一氧化氮合成途径研究进展   总被引:1,自引:0,他引:1  
一氧化氮(NO)作为一种气体信号分子,在植物生理过程中发挥重要作用,它参与调节植物的生长、发育及对外界环境的应激反应.植物体内主要通过酶催化途径和非酶催化途径合成NO.酶催化途径合成NO的主要酶包括一氧化氮合酶(nitric oxide synthase,NOS)和硝酸还原酶(nitrate reductase,NR),以及在某些植物的特定组织或器官或在特殊环境条件下存在的一氧化氮氧化还原酶(nitric oxide oxidoreductase,Ni-NOR)和黄嘌呤氧化还原酶(xanthine oxidoreductase,XOR).非酶催化合成途径主要是在酸性和还原剂存在条件下将亚硝酸盐还原成NO.该文主要结合研究方法,综述了植物体内NO合成途径的研究进展,为植物体内NO信号的作用机理的深入研究提供信息资料.  相似文献   

8.
硫代葡萄糖苷的降解途径及其产物的研究进展   总被引:4,自引:0,他引:4  
硫代葡萄糖苷(GS)是一类广泛存在于植物界的次生代谢产物,其降解产物具有多种活跃的化学和生物活性.GS种类繁多,根据其侧链R基团来源不同可以分为脂肪族、芳香族和吲哚族3大类.GS降解过程受多种因素影响而难以控制:不同种类的GS在硫苷酶作用下产生异硫氰酸酯类、腈类、硫氰酸酯类、环腈类、恶唑烷酮类化合物等,在较高温度下能发生自降解,在强酸、强碱以及某些化学物质的作用下也不稳定,也能在微生物作用下有效降解.该文从影响GS降解的内源和外源因素入手,系统阐述了GS的酶降解、热降解、化学降解、微生物降解等途径及其产物,为理论研究和生产实践中GS降解的控制提供信息.  相似文献   

9.
硫代葡萄糖苷及其降解产物异硫代氰酸盐   总被引:2,自引:0,他引:2  
硫代葡萄糖苷是一种含硫的次级代谢产物,广泛分布于十字花科植物中。不同的栽培种、不同的生理阶段、不同的组织部位以及不同的栽培条件,都会使植物中含有的硫代葡萄糖苷的含量和成分有所变化。当硫代葡萄糖苷经葡萄糖硫苷酶作用时会发生降解,生成异硫代氰酸盐等产物。采后的一系列处理会影响植物中硫代葡萄糖苷的含量。硫代葡萄糖苷的降解产物异硫代氰酸盐作为一种化学预防剂,能抑制阶段Ⅰ酶(phase Ⅰ enzyme),诱导阶段Ⅱ酶(phaseⅡenzyme),从而防止癌症的发生。目前对硫代葡萄糖苷的鉴定方法主要是高效液相色谱法,气相色谱法等。  相似文献   

10.
植物芥子酶研究进展   总被引:7,自引:0,他引:7  
芥子酶防御系统为白花菜目植物特有.由芥子酶及其底物硫代葡萄糖苷组成.芥子酶和硫代葡糖苷分别储藏在不同的细胞中,在受到病虫侵袭时,底物和酶相遇,硫代葡糖苷被降为有毒化合物,起防御作用.对植物芥子酶防御系统研究进展进行了综述,包括基因家族的结构、基因的表达调控、芥子酶的细胞定位、植物以外其它生物的芥子酶、硫代葡糖苷/芥子酶系统起源进化以及其可能功能等.  相似文献   

11.
12.
Aliphatic glucosinolates and their derived isothiocyanates are important secondary metabolites in crucifers. Some of these compounds have beneficial activities such as carcinogen detoxification, pesticidal and antifungal properties, but others are anti-nutritional; the differences are largely due to side chain modifications. We report the cloning and in planta functionality analysis of BoGSL-ALK, a gene whose protein product influences side-chain modifications in the glucosinolate pathway. Expression of this Brassica gene was demonstrated in Arabidopsis thaliana by assaying RNA activity and monitoring changes in the glucosinolate profiles in leaves and seeds of transformed plants. Dependent on the proposed uses of the crops under development, the ability to regulate BoGSL-ALK expression is a key step towards engineering Brassica crops with specific glucosinolate content.  相似文献   

13.
Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2.  相似文献   

14.
合成生物学作为一种颠覆性技术可应用于农业领域的创新发展,解决当前农业学科中的瓶颈问题。利用文献计量学方法从领域发表论文的时序数量分布、主题分布等探测当前合成生物学的基本态势。基于领域的主题分布可知,其中植物合成生物学这一主题是稳定存在的且主题规模处于稳定增长趋势。聚焦植物合成生物学这一主题方向,在构建引文网络的基础上利用主路径分析方法从知识流动角度探测植物合成生物学领域重要知识节点,内容涵盖介子油苷生物合成途径,重要催化酶功能解析、转录因子的调控作用,组学方法的应用,利用微生物酵母进行生物物质合成,这些内容表征了合成生物的核心理论技术。  相似文献   

15.
合成生物学作为一种颠覆性技术可应用于农业领域的创新发展,解决当前农业学科中的瓶颈问题。利用文献计量学方法从领域发表论文的时序数量分布、主题分布等探测当前合成生物学的基本态势。基于领域的主题分布可知,其中植物合成生物学这一主题是稳定存在的且主题规模处于稳定增长趋势。聚焦植物合成生物学这一主题方向,在构建引文网络的基础上利用主路径分析方法从知识流动角度探测植物合成生物学领域重要知识节点,内容涵盖介子油苷生物合成途径,重要催化酶功能解析、转录因子的调控作用,组学方法的应用,利用微生物酵母进行生物物质合成,这些内容表征了合成生物的核心理论技术。  相似文献   

16.
The tryptophan (Trp)-derived plant secondary metabolites, including camalexin, 4-hydroxy-indole-3-carbonylnitrile, and indolic glucosinolate (IGS), show broad-spectrum antifungal activity. However, the distinct regulations of these metabolic pathways among different plant species in response to fungus infection are rarely studied. In this study, our results revealed that WRKY33 directly regulates IGS biosynthesis, notably the production of 4-methoxyindole-3-ylmethyl glucosinolate (4MI3G), conferring resistance to Alternaria brassicicola, an important pathogen which causes black spot in Brassica crops. WRKY33 directly activates the expression of CYP81F2, IGMT1, and IGMT2 to drive side-chain modification of indole-3-ylmethyl glucosinolate (I3G) to 4MI3G, in both Arabidopsis and Chinese kale (Brassica oleracea var. alboglabra Bailey). However, Chinese kale showed a more severe symptom than Arabidopsis when infected by Alternaria brassicicola. Comparative analyses of the origin and evolution of Trp metabolism indicate that the loss of camalexin biosynthesis in Brassica crops during evolution might attenuate the resistance of crops to Alternaria brassicicola. As a result, the IGS metabolic pathway mediated by WRKY33 becomes essential for Chinese kale to deter Alternaria brassicicola. Our results highlight the differential regulation of Trp-derived camalexin and IGS biosynthetic pathways in plant immunity between Arabidopsis and Brassica crops.  相似文献   

17.
Glucosinolate metabolism and its control   总被引:25,自引:0,他引:25  
Glucosinolates and their associated degradation products have long been recognized for their distinctive benefits to human nutrition and plant defense. Because most of the structural genes of glucosinolate metabolism have been identified and functionally characterized in Arabidopsis thaliana, current research increasingly focuses on questions related to the regulation of glucosinolate synthesis, distribution and degradation as well as to the feasibility of engineering customized glucosinolate profiles. Here, we highlight recent progress in glucosinolate research, with particular emphasis on the biosynthetic pathway and its metabolic relationships to auxin homeostasis. We further discuss emerging insight into the signaling networks and regulatory proteins that control glucosinolate accumulation during plant development and in response to environmental challenge.  相似文献   

18.
flg22是细菌鞭毛蛋白N端的一段保守性极高的区域,能够诱导植物天然的免疫反应,为全面了解植物在受到细菌性病原菌侵害后的系统响应,利用Illumina Hiseq2000对flg22处理和未处理的拟南芥幼苗进行转录组测序。对两组数据进行差异表达分析,共获得1 200个差异表达基因,包括290个下调基因和910个上调基因。对差异表达基因进行GO富集分析和KEGG pathway富集分析,结果显示,flg22处理后,拟南芥在能量代谢、氨基酸代谢及次生代谢产物的生物合成等方面产生了巨大变化。芥子油苷是一类在植物防御病原菌的天然免疫反应中起重要作用的次生代谢产物,因此对芥子油苷代谢途径的变化进行了深入分析。根据测序结果,Flg22处理后吲哚族芥子油苷合成途径的基因表达水平显著提高,而脂肪族芥子油苷代谢途径几乎没有变化,进一步对吲哚族芥子油苷合成途径的关键酶基因进行Real Time RT-PCR的分析,验证了测序结果的正确性,证明了吲哚族芥子油苷在植物抗病防御反应中的重要作用。这为深入理解病原菌诱导的植物防御性反应及吲哚族芥子油苷的抗病机制提供了大量参考数据。  相似文献   

19.
Regulation of plant glucosinolate metabolism   总被引:11,自引:0,他引:11  
Yan X  Chen S 《Planta》2007,226(6):1343-1352
Glucosinolates and their degradation products are known to play important roles in plant interaction with herbivores and micro-organisms. In addition, they are important for human life. For example, some degradation products are flavor compounds and some exhibit anticarcinogenic properties. Recent years have seen great progress made in the understanding of glucosinolate biosynthesis in Arabidopsis thaliana. The core glucosinolate biosynthetic pathway has been revealed using biochemical and reverse genetics approaches. Future research needs to focus on questions related to regulation and control of glucosinolate metabolism. Here we review current status of studies on the regulation of glucosinolate metabolism at different levels, and highlight future research towards elucidating the signaling and metabolic network that control glucosinolate metabolism.  相似文献   

20.
The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S‐glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP‐glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1‐2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号