首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
2.
Renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin (IL)-1 beta. We demonstrate here that the stable ATP analog adenosine 5'-O-(thiotriphosphate) (ATP gamma S) potently amplifies the cytokine-induced gelatinolytic content of mesangial cells mainly by an increase in the MMP-9 steady-state mRNA level. A Luciferase reporter gene containing 1.3 kb of the MMP-9 5'-promoter region showed weak responses to ATP gamma S but conferred a strong ATP-dependent increase in Luciferase activity when under the additional control of the 3'-untranslated region of MMP-9. By in vitro degradation assay and actinomycin D experiments we found that ATP gamma S potently delayed the decay of MMP-9 mRNA. Gel-shift and supershift assays demonstrated that three AU-rich elements (AREs) present in the 3'-untranslated region of MMP-9 are constitutively bound by complexes containing the mRNA stabilizing factor HuR. The RNA binding of these complexes was markedly increased by ATP gamma S. Mutation of each ARE element strongly impaired the RNA binding of the HuR containing complexes. Reporter gene assays revealed that mutation of one ARE did not affect the stimulatory effects by ATP gamma S, but mutation of all three ARE motifs caused a loss of ATP-dependent increase in luciferase activity without affecting IL-1 beta-inducibility. By confocal microscopy we demonstrate that ATP gamma S increased the nucleo cytoplasmic shuttling of HuR and caused an increase in the cytosolic HuR level as shown by cell fractionation experiments. Together, our results indicate that the amplification of MMP-9 expression by extracellular ATP is triggered through mechanisms that likely involve a HuR-dependent rise in MMP-9 mRNA stability.  相似文献   

3.
4.
5.
6.
7.
8.
AU-rich elements (AREs) located in the 3' UTRs of the messenger RNAs (mRNAs) of many mammalian early response genes promote rapid mRNA turnover. HuR, an RRM-containing RNA-binding protein, specifically interacts with AREs, stabilizing these mRNAs. HuR is primarily nucleoplasmic, but shuttles between the nucleus and the cytoplasm via a domain called HNS located between RRM2 and RRM3. We recently showed that HuR interacts with two protein ligands, pp32 and APRIL, which are also shuttling proteins, but rely on NES domains recognized by CRM1 for export. Here we show that heat shock induces increased association of HuR with pp32 and APRIL through protein-protein interactions and that these ligands partially colocalize with HuR in cytoplasmic foci. HuR associations with the hnRNP complex also increase, but through RNA links. CRM1 coimmunoprecipitates with HuR only after heat shock, and nuclear export of HuR becomes sensitive to leptomycin B, an inhibitor of CRM1. Export after heat shock requires the same domains of HuR (HNS and RRM3) that are essential for binding pp32 and APRIL. In situ hybridization and coimmunoprecipitation experiments show that LMB treatment blocks both hsp70 mRNA nuclear export and its cytoplasmic interaction with HuR after heat shock. Together, our results argue that upon heat shock, HuR switches its export pathway to that of its ligands pp32 and APRIL, which involves the nuclear export factor CRM1. HuR and its ligands may be instrumental in the nuclear export of heat-shock mRNAs.  相似文献   

9.
10.
Tumor necrosis factor alpha (TNFalpha) expression is a key mediator of ethanol-induced liver disease. Increased lipopolysaccharide (LPS)-stimulated TNFalpha expression in macrophages after chronic ethanol feeding is associated with a stabilization of TNFalpha mRNA (Kishore, R., McMullen, M. R., and Nagy, L. E. (2001) J. Biol. Chem. 276, 41930-41937). Here we show that the 3'-UTR of murine TNFalpha mRNA was sufficient to mediate increased LPS-stimulated expression of a luciferase reporter in RAW 264.7 macrophages after chronic ethanol exposure. Further, we show that HuR, a nuclear/cytoplasmic shuttling protein, which binds to TNFalpha mRNA, is required for increased expression of TNFalpha after chronic ethanol. In Kupffer cells, HuR was primarily localized to the nucleus and then translocated to the cytosol in response to LPS in both pair- and ethanol-fed rats. After chronic ethanol feeding, HuR quantity in the cytosol was greater, both at baseline and in response to LPS, compared with pair-fed controls. Using RNA gel shift assays, we found that LPS treatment increased HuR binding to the 65-nucleotide A + U-rich element of the TNFalpha 3'-UTR by 2-fold over baseline in Kupffer cells from pair-fed rats. After chronic ethanol feeding, HuR binding to the TNFalpha A + U-rich element was increased by more than 5-fold at baseline and in response to LPS, compared with pair-fed controls. Down-regulation of HuR expression by RNA interference prevented the chronic ethanol-induced increase in expression of luciferase reporters containing the TNFalpha 3'-UTR. Taken together, these data demonstrate that increased binding of HuR to the TNFalpha 3'-UTR contributes to increased LPS-stimulated TNFalpha expression in macrophages after chronic ethanol exposure.  相似文献   

11.
12.
Elavl1 (also known as HuR), an RNA binding protein highly conserved between zebrafish and human, regulates gene expression by stabilizing target mRNA. Our previous studies have uncovered that the predominant isoform elavl1a is required for zebrafish embryonic erythropoiesis. However, the exact mechanism of how elav11 spatiotemporally stabilizes target mRNAs to regulate specific erythropoiesis is not yet understood. Here we show that phosphorylation of elavl1a at Ser219 and Ser316 by PKC is necessarily required for cytosolic shuttling from the nucleus to stabilize gata1 mRNA and thus promotes erythropoiesis. Knockdown of elavl1a resulted in the hindrance of erythropoiesis and Hemin-induced erythroid differentiation of human myeloid leukemia K562 cells. Interestingly, inhibition of PKC reproduced the phenotype seen during zebrafish embryogenesis and erythroid differentiation of myeloid leukemia. Mechanistically, Hemin induced elavl1a export from nuclear to cytoplasmic space in K562 cells in a manner dependent on phosphorylation on Ser219 and Ser316, as overexpression of elavl1a with mutations on Ser219 and Ser316 resulted in erythropoiesis failure. Additionally, co-administration of low doses of elavl1a morpholino (MO) and three PKC inhibitors showed a combined effect in zebrafish embryonic erythropoiesis dysplasia. In conclusion, our study reveals that PKC-mediated phosphorylation of elavl1a at Ser219 and Ser316 sites controls its nucleo-cytoplasmic translocation in zebrafish, thereby regulating embryonic erythropoiesis.  相似文献   

13.
P Loflin  J E Lever 《FEBS letters》2001,509(2):267-271
Differentiation-dependent expression of the Na(+)/glucose cotransporter (SGLT1) is accompanied by a large, cAMP-dependent increase in stability of its mRNA. Stabilization is mediated by protein binding to a critical uridine-rich element (URE) in its 3' untranslated region. In the present study, we demonstrate that HuR, an RNA binding protein of the embryonic lethal abnormal vision family, binds the SGLT1 URE. HuR binding was increased after elevation of intracellular cAMP levels and was dependent on protein phosphorylation. This interaction was prevented by a substitution mutation previously shown to block cAMP-dependent reporter message stabilization. These results implicate HuR as a key mediator of cAMP-dependent SGLT1 mRNA stabilization.  相似文献   

14.
15.
We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3′ untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3′ UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3′ UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein.  相似文献   

16.
RNA结合蛋白HuR可以结合并调控靶标mRNA稳定性与翻译,但影响HuR 结合活性的因素有待探讨。本研究从蛋白质-蛋白质相互作用角度对影响HuR 与RNA结合活性的因素做了探讨。结果发现,热激蛋白Hsp72在细胞浆与HuR相互作用并促进HuR与p21 (KIP1) 3′UTR(3′非翻译区)的结合; 热休克下Hsp72总蛋白质及细胞浆蛋白质水平上调、但HuR总蛋白质及细胞浆蛋白质水平不变|热休克下HuR与p21 3′UTR的相互作用加强、p21蛋白及mRNA水平上调。上述结果提示,Hsp72可通过与HuR相互作用促进后者与p21 mRNA的结合,进而加强热休克下HuR对p21的表达的促进作用。这些结果为进一步解析HuR的生物学作用机制提供了实验依据。  相似文献   

17.
18.
The activation of cytosolic phospholipase A(2)α (cPLA(2)α) plays an important role in initiating the inflammatory response. The regulation of cPLA(2)α mRNA turnover has been proposed to control cPLA(2)α gene expression under cytokine and growth factor stimulation. However, the detailed mechanism is still unknown. In this report, we have demonstrated that the cPLA(2)α mRNA stability was increased under IL-1β treatment in A549 cells. By using EMSAs, HuR was identified as binding with the cPLA(2)α mRNA 3'-UTR, and the binding region was located at nucleotides 2716-2807, a fragment containing AUUUA flanked by U-rich sequences. IL-1β treatment enhanced the association of cPLA(2)α mRNA with cytosolic HuR. The reduction of HuR expression by RNA interference technology inhibited IL-1β-induced cPLA(2)α mRNA and protein expression. Furthermore, blocking the p38 MAPK signaling pathway with SB203580 abolished the effect of IL-1β-induced cPLA(2)α gene expression. Phosphorylation at residue Thr-118 of HuR is crucial in regulating the interaction between HuR and its target mRNAs. Mutation of HuR Thr-118 reduced the association between HuR and cPLA(2)α mRNA under IL-1β treatment. This inhibitory effect was also observed in binding with COX-2 mRNA. This result indicated that p38 MAPK-mediated Thr-118 phosphorylation may play a key role in regulating the interaction of HuR with its target mRNAs in inflammation.  相似文献   

19.
20.
Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKCη, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKCη is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKCη expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKCη, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKCη to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号